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Abstract
This report summarises a review of studies from the North Atlantic and Baltic Sea region, in which someform of spatial extreme value analysis was applied to storm surges. The 37 reviewed papers were cat-egorised into 1) physics-based, 2) regional frequency analysis, 3) one-dimensional, 4) fully spatial and5) satellite-based approaches. Studies based on physical modelling were the most numerous, likely be-cause physical models directly provide spatial data for extreme value analysis without a need for usingcomplex spatial statistical models. While there was a limited number of fully spatial modelling studiesapplied to storm surges in the study region, Bayesian hierarchical modelling with max-stable processesseemed the most promising for future research purposes. This approach allows for modelling the spa-tial dependence in the annual maxima and the extreme value distribution parameters at hand and alsoprovides means to simulate spatial realisations of sea level extremes.

1 Introduction
In the Baltic sea region, reliable modelling of occurrence probabilities of sea level extremes is importantfor coastal planning, as the impacts of high sea level range fromcoastal erosion andhabitat destruction tohuman losses (Rutgersson et al., 2021). The magnitude of extreme sea levels (ESLs) depends jointly on amultitude of physical phenomena such asmoving low pressure systems, long term sea level changes andinternal oscillations, which may or may not occur simultaneously. In the Baltic Sea, tides are relativelyunimportant with some regional exceptions (Medvedev et al., 2016), but in many other parts of theworld their inclusion is integral for proper analysis of sea level extremes.Several strategies have been developed for estimating occurrence probabilities of high sea levels,both in the present and changing climate. Often the estimates are calculatedusing univariate approaches,in which only point-wise estimates of occurrence probabilities of, e.g., annual sea level maxima are pro-vided. The most widely used approaches are the block-maxima approach, leading to the generalisedextreme value distribution (GEV), and the peaks-over-threshold approach, using the generalised Paretodistribution (GPD) as a model for threshold exceedances. There are also other slightly different distri-butional choices based on the aforementioned ones such as the r-largest GEV distribution. An overviewof these approaches is given in Coles (2001), but their main properties will also be summarised in thisreview.A natural extension to univariate modelling of sea level extremes is to account for spatial (and tem-poral) variations in the extremes. Themotivation of using spatial models is obvious. By taking the spatialdependence into account, estimates of occurrence probabilities and corresponding return levels are im-proved (less biased and less uncertain) over data-sparse regions. Most spatial modelling approaches canbe used to calculate return level estimates of storm surges between tide gauge locations and can alsodirectly simulate time series of sea level extremes in ungauged locations.Extreme value analysis (EVA) studies can be roughly divided into two categories. The first one cov-ers different physics-based modelling approaches, in which hydrodynamic simulations are performed toprovide information about sea level variations. These are then used, potentially with additional covari-ate information, to analyse statistics of sea-level extremes (often using univariate extreme value analysisapproaches) in the present-day and changing climate. The second category covers methods, in whichEVA is performed on some form of sea level observations, although these approaches may additionallyuse model simulated quantities to facilitate spatial and temporal modelling of the extremes.
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One approach to include spatial information to the extreme value modelling is to apply the so-calledregional frequency analysis (RFA) (Hosking et al., 1997). In RFA, suitably standardised data is pooledover a region of interest according to certain rules in order to improve the reliability of the estimatedprobabilities for rare events. However, more attention has been recently given to more complex spatialmodels which explicitly model the spatial dependence of sea level extremes. A downside is that fullyspatial models are often substantially more complex than the more traditional EVA approaches.Statistical models for spatial extremes have been applied to observed and simulated data of manymeteorological variables such as precipitation (e.g., Cooley et al., 2007; Sang et al., 2010; Reich et al.,2012). However, less work seem to bemade with respect to sea level extremes. To advance work relatedto modelling of sea level extremes within the MAWECLI project framework, we make a systematic lit-erature review of recent work on spatio-temporal modelling of sea level extremes in the Baltic Sea andNorth Atlantic coastal regions, the main focus being on the spatial modelling aspects. We first introducethe review framework, summarise the basic information of the reviewed articles and discuss the basicsof EVA. We then give a more detailed overview of the reviewed approaches to performing EVA on sealevel extremes and conclude with a summary of the main benefits and shortcomings of the differentmethodological approaches. We also briefly give suggestions to future research directions on spatialextreme value modelling within the MAWECLI framework.

2 The review framework
Articles were first collected and filtered based on a certain set of keywords fromGoogle Scholar (https:
//scholar.google.com/), ClarivateWebof Science (https://www.webofscience.com/wos/woscc/
basic-search) and Semantic Scholar (https://www.semanticscholar.org/). We only consideredpapers written in english and that had gone through a peer-review process. Some older potentiallyuseful articles were unfortunately unavailable to us and thus, were not included here. We constrainedthe search to articles in which the analysis was geographically focused either in the Baltic Sea or theNorth Atlantic coastal region. However, we also included global-scale studies, if they covered the afore-mentioned regions. Furthermore, it was required that some form of statistical EVA be explicitly appliedspatially or to spatial data in the paper. To further constrain the review, articles in which the wave heightor tropical cyclones were exclusively analysedwere omitted. Waves in particular have some data specificfeatures that are out of scope of this review. However, this decision admittedly left out some articles,which would had likely been methodologically useful for our purposes. A final screening based on thereferenceswithin the initial set of articleswasmade in an attempt to includemissed articles to the extentpossible.A total of 37 articles matching the criteria of our review were found from the various literaturesources. These articles were divided into the following five categories: 1) Physics-based approaches,2) Regional frequency analysis, 3) one-dimensional spatial methods, 4) fully spatial statistical methodsand 5) satellite-based approaches. There was a distinct lack of papers covering the Baltic Sea region incategory 4, which lead to the decision to include a larger geographical region in the review. The reviewedarticles and their main properties are listed in Table 1.A basic summary of the approaches and methods applied in the reviewed articles is shown in Fig.1. The most common approach among the reviewed articles (21 articles in total) was the application ofEVA on physics-based simulations of extreme sea levels. The most popular distribution applied in thesestudies was the generalised Pareto distribution (nine articles) when inferring occurrence probabilities of
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ESL events. In seven articles, either the GEV distribution or Gumbel distribution was used. The reasonwhy the Gumbel distribution was favoured over the GEV distribution in so many articles, was likely dueto its simple form, which facilitated parameter estimation from simulated data. Furthermore, in fourout of 21 articles the r-largest GEV distribution was used to model the sea level extremes, and one alsoconsidered the exponential distribution.The observation-based studies were further divided into five additional categories based on the spa-tial modelling approach taken in them. The regional frequency analysis (RFA) was the most popular ap-proach and applied in five out of 16 articles. Bayesian hierarchical modelling (BHM) and one-dimensionalregression-basedmodelswere both applied in three articles. Furthermore, therewere two studieswhichused satellite altimeter data for spatial analysis and one in which stochastic modelling of ESLs was ap-plied. Distributional choices for EVA were also more numerous than in the physical modelling studies. Atotal of eight different distributions were used, although not all of them were applied in spatial context.Overall, GEV (12 out of 15) and GPD (five out of 13) were the most popular choices, with a number ofother distributions applied in one or two studies.
Table 1: A summary of the main features of the reviewedstudies. The abbreviations are described in the main text.

Author Period Region Type Method
1. Rashid et al., 2024 1950–2017 CONUS Statistical GEV, Stochas-tic2. Bij De Vaate et al., 2024 1993–2021 Global Statistical GEV, Satellite3. Muis et al., 2023 1951–2050 Global Physical(GTSM) GPD, Expo-nential, GEV,Gumbel4. Li et al., 2023 1979–2018 Global Physical(GTSM) GPD
5. Lorenz et al., 2023 1979–2018 Baltic Sea Physical(GETM) GEV, GPD
6. Calafat et al., 2022 1960–2018 Western Europe Statistical BHM, GEV7. Andreevsky et al., 2020 1846–2011 Western Europe Statistical RFA, GPD8. Calafat et al., 2020 1960–2013 North Sea Statistical BHM, GEV9. Muis et al., 2020 1979–2017,1976–2100 Global Physical(GTSM) GPD
10. Beck et al., 2020 1966–2015 Nort-WestAtlantic Coast Statistical BHM, GEV
11. Muis et al., 2019 1988–2015 US North-Atlantic coast-line

Physical(GTSM) GPD

12. Vousdoukas et al., 2018 2000–2100 Global Physical(DFLOW FM,FES2014)
GEV, GPD

Continued on next page
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Table 1: A summary of the main features of the reviewedstudies. The abbreviations are described in the main text.
Author Period Region Type Method
Soomere et al., 2018 1961–2005 Baltic Sea Statistical GEV, Gumbel,2-parameterWeibull14. Lobeto et al., 2018 1993–2015 US North-Atlantic coast-line

Statistical GEV, Satellite

15. Frau et al., 2018 1846–2017 Western Europe Statistical RFA, GPD16. Wahl et al., 2017 1979–2014 Global Physical(GTSR) Gumbel
17. Muis et al., 2017 1979–2014 Global Physical(GTSR) Gumbel
18. Muis et al., 2016 1979–2014 Global Physical(GTSR) Gumbel
19. Vousdoukas et al., 2016 1970–2005,2010–2040,2070–2100

Europe Physical(Delft3D) GPD

20.Weiss et al., 2013 1915–2011 British Isles Statistical RFA, GEV,GPD21. Marcos et al., 2012 1950–1999,1958–2001,2000–2099
Bay of Biscay Physical(HAMSOM) GEV

22. Gräwe et al., 2012 1960–2000,2000–2100 Baltic Sea Physical(GETM) GEV, r-largestGEV, GPD23. Marcos et al., 2009 1950–19991958–2001,2000–2099
Mediterranean,Iberian coast Physical(HAMSOM) r-largest GEV

24. Bardet et al., 2011 1846–2008 North-EastAtlantic coast Statistical RFA, GPD,Exponen-tial, Mixedexponential25. Bernardara et al., 2011 early 19th cen-tury onward Western Europe Statistical RFA, GPD
26. Haigh et al., 2010 1900–2006 English Channel Statistical GEV, r-largestGEV, JPM,RJPM, SRJPM27. Marcos et al., 2009 1958–2001 Mediterranean,Iberian coast Physical(HAMSOM) GPD

Continued on next page
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Table 1: A summary of the main features of the reviewedstudies. The abbreviations are described in the main text.
Author Period Region Type Method

28. Wang et al., 2008 1961–1990,1990–2002,2031–2020
Irish waters Physical(ROMS) GEV

29. Butler et al., 2007a 1955–2000 North Sea Physical (CSX) r-largest GEV30. Butler et al., 2007b 1955–2000 North Sea Physical (CSX) r-largest GEV31. Bernier et al., 2006 1960–1999 North-WestAtlantic Physical(POM) Gumbel
32. Meier, 2006 1961–1990,1903–1998,2071–2100

Baltic Sea Physical (RCO) Gumbel

33. Lowe et al., 2005 1961–2000,2071–2100 British Isles Physical (CSX) GEV
34. Lowe et al., 2001 2006–2036,2081–2100 British Isles Physical (CSX) Gumbel
35. Dixon et al., 1998 NA British Isles Statistical 1-d regres-sion, GEV,RJPM36. Dixon et al., 1992 1813–1988 British Isles Statistical 1-d regres-sion, GEV37. Coles et al., 1990 1813–1988 British Isles Statistical 1-d regres-sion, GEV

Figure 1: A summary of the methods used in the reviewed articles. The counts are shown separately forphysical and statistical modelling articles. The first five boxes show the spatial approaches taken in thestatistical modelling articles. The abbreviations are described in the main text.8



3 Preliminaries
In this section, we briefly recap the basics of the extreme value theory following Coles (2001). Startingwith theblockmaximaapproach in theunivariate case (i.e., no spatial dependence), let Yi = {Y1; : : : ; Yn}be a sequence of independent and identically distributed (i.i.d.) random variables. We are interestedin the behavior of Mn = max{Y1; : : : ; Yn}, for example the annual maximum sea level in case n is thenumber of observations over a year long period. The classical extreme value theory states that assumingthere exist sequences of normalizing constants {an > 0} and {bn} such that

Pr{(Mn − bn)=an} → G(y) as n → ∞; (1)
then the only suitable limiting distribution for G is the GEV distribution
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The three parameters — ∈ R, ff > 0 and ‰ ∈ R in Eq. (2) are the location, scale and shape parameter,respectively. The GEV tail behavior depends on the shape parameter ‰ such that when ‰ < 0 (Weibull),
y has an upper limit at —− ‰=ff, whereas for ‰ = 0 (Gumbel) and ‰ > 0 (Fréchet), the tail is unbounded.Equation (2) can be inverted to obtain the GEV quantile function
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In Eq. 3, yp is the p-quantile corresponding to certain exceedance probability p, also known as the returnlevel. The quantile function can be alternatively expressed using the definition of return periodT = 1=p.For typical hydrological and meteorological observations, a block size of one year is often considered tobe large enough for the GEV distribution assumptions to approximately hold, but other block sizes (e.g.monthly) have also been used.To copewith the limited amount of data available for estimating theGEV distribution parameters, theso-called r-largest GEV was developed as an extension to the traditional GEV distribution. In this case, rlargest values from each data block are retained instead of using only the largest one. The same assump-tions hold, as in the case of the GEV distribution, and the same distribution parameters are estimated,using the joint density for the r largest values
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The benefit of the r-largest GEV is that more information about the extremes is included, which in princi-ple facilitates the estimation of GEV distribution parameters. However, this is made with the expense ofpossibly deviating from the theoretical assumptions for too large values of r , which might lead to biasesin the parameter estimates. More information about this approach is provided by Coles (2001).Another commonly used approach is the so-called peaks-over-threshold approach, which is analo-gous to block-maxima approach. Denoting excesses over some large enough threshold u asXi = Yi − uwith Yi > u, the limiting distribution for the threshold excesses is the generalised Pareto distribution(GPD)
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H(x ; f̃f; ‰) =
1− (1 + ‰x

f̃f
)−1=‰; for ‰ ̸= 0

1− exp(− x
f̃f
); for ‰ = 0;

(5)
where f̂f = ff + ‰(u − —) is the GPD scale parameter. The shape parameter ‰ is equivalent to the GEVshape and defines the tail behaviour accordingly. The GPD quantile function corresponding to N-yearreturn level is defined as

xp =
u + f̃f

‰
[(Nny–u)

‰ − 1]; for ‰ ̸= 0

u + f̃f log(Nny–u); for ‰ = 0
; (6)

where ny is the number of observations per year and –u is the probability of exceeding u. One of themain challenges in using GPD is how to select the threshold u, and there are several ad-hoc methodsdeveloped for selecting a suitable threshold value (e.g., Scarrott et al., 2012). Often, as low threshold aspossible is chosen such that GPD is still a reasonable approximation to the data, so that the sample sizeis not too severely limited (Coles, 2001).

4 Spatial extreme value modelling approaches
We next discuss the various methods used in the reviewed extreme value modelling studies. The mainweight is on describing the methodological choices rather than on the modelling results, but the mostimportant ones are presented whenever they support the methodological discussion and help to under-stand the strengths and weaknesses of the method at hand.
4.1 Physics-based modelling
Physical modelling provides a compelling alternative to statistical spatial modelling approaches whenanalysing ESLs (Weisse et al., 2021). The main strength of physical models is that they, by definition,can simulate physically meaningfully spatio-temporal sea level processes and provide spatially coherentresults; as Butler et al. (2007b) state, "from the statistical perspective the model output can effectivelybe regarded as spatially and temporally resolved storm surge elevation data". One important benefit ofusing physics-basedmodels is that the contributions of different factors that drive ESLs can be evaluatedin parallel with the statistics of ESLs. Furthermore, the limited availability of observed sea level extremescan be in principle alleviated by running model simulations over long time periods, although it is com-putationally costly to perform long-term simulations with complex physics-basedmodels. Studies basedon simulated sea levels typically, but not always, apply EVA independently on each grid box with theassumption that the model directly resolves spatial dependencies. Physical modelling is also requiredto provide covariate information for the extreme value models, when future changes in the sea levelextremes are studied.While there have been several physic-based modelling studies on extreme sea levels in the studyregion, many used the tail quantiles of the empirical distribution, when analysing the tail of behavior ofESLs. To keep the study focused, we restricted our review solely to those papers that explicitly includedsome form of theoretical extreme value analysis. This allowed to make some comparisons between thephysics-based and statistical modelling approaches. Most of the physical modelling studies were madeon a regional scale and provided location-specific information about extreme sea levels. Therefore, wereview their main aspects on a regional basis.
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The first physics-based extreme value analyses on the North Sea region and the British Isles weremade by Lowe et al. (2001) and Lowe et al. (2005). They studied future changes in storm surges aroundthe British Isles and the adjacent sea areas with the CSX model (e.g., Flather et al., 1998), using theGumbel and GEV distribution for EVA. Model simulations in these early studies had a rather coarse res-olution (35 km), which resulted with an underestimation of return level estimated with respect to theobservations. Another climate study was conducted in the same region by Wang et al. (2008), who pro-jected spatial changes of storm surge return levels on the Irish waters in the mid-21st century conditionsby applying the standard GEV distribution to the regional oceanic model system (ROMS) simulations(Shchepetkin et al., 2005). The main benefit with respect to the earlier studies was the increased spatialresolution (∼ 7 km) and added insights into the surge generating mechanisms. Note that in all thesestudies the five largest independent surges from each year were used at least in some parts of the studyto fit themodel instead of yearly blockmaxima, but it is not immediately apparent, whether the r-largestapproach was used or not. All these studies underlined the importance of reliable forcing data.The study by Butler et al. (2007b) was the first one, where a statistical spatial extreme value modelwas applied to simulated storm surges. They used a coarse (∼35 km) resolution, 46 years long stormsurge reconstruction generated with the CSX model over the North Sea region and fitted three variantsof the r-largest GEV distribution to the data: one with grid-box specific parameters, one with a non-stationary model for the location and scale parameter and one in which these two parameters wereallowed to vary both in space and time. They used the 20 largest independent annual values in theiranalysis, which is a rather large number compared to the other reviewed studies. The spatial and tem-poral dependence were modelled using a non-parameteric kernel approach that enforces local spatialand temporal smoothness in the twoGEVparameters. Model uncertaintywas assessed by bootstrapping(resampling with replacement) temporal samples from data, while keeping the spatial structure fixed.Butler et al. (2007b) showed that this model allowed to generate smooth spatial estimates of temporaltrends in the location and scale parameter. However, a major shortcoming of this approach is that thereis not an easy way to select an optimal kernel bandwidth for handling the spatial and temporal smooth-ness, when estimating the model parameters. Again, physical model deficiencies such as the coarseresolution were acknowledged to affect the results in certain areas. A similar study was performed byButler et al. (2007a) who used the CSX model and the r-largest GEV in a similar manner to Butler et al.(2007b), with the main weight being on the decadal-scale storm surge variations.In the Baltic Sea region, which is the region of most interest in the review, the first EVA study usingphysical modelling was made by Meier (2006). He used the Gumbel distribution, including uncertaintyestimates based on bootstrapping, to infer the spatial pattern of 100-year return levels from an 11 kmresolution hindcast and time-slice simulations run with the RCO model (e.g. Meier et al., 1999). Thereturn level values were reasonably close to the observed values apart from the western Baltic Sea,Finnish archipelago and the end of the Gulf of Finland, where they were underestimated. The resultsshowed that when changes in mean sea level were included, increases in the exceedance probabilityof extreme sea levels above 160 cm were seen over large areas on the westward-facing coastal regionsof the Baltic Sea during the 21st century. Later, Gräwe et al. (2012) performed a more detailed, high-resolution (1 km spatial resolution) transient simulation with the General Estuarine Transport Model(GETM) (Burchard et al., 2002) over the western Baltic Sea. They compared three distributions, whenmodelling the storm surge height: GEV, r-largest GEV and GPD. By comparing return level estimatesobtained from distribution fits to observations and model simulations at several tide gauge locations,they concluded that the r-largest GEV distribution with r = 5 provided a sufficient fit to the simulateddata and also had the smallest uncertainty range. Relative biases in 10 to 50-year return level estimates
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were about ±5%, which indicated that the high resolution model gave accurate results. Locally, theerrors were still of the order of 10–20%, likely due to misrepresentation of local topography, althoughthe limitations of atmospheric forcing could also explain part of the error. Over large areas, the GEVshape parameter was negative, which is in line with some observation-based statistical studies (e.g.,Räty et al., 2023).Soomere et al. (2018) studied various extreme value distributions on the southern coast of the Gulfof Finland and the Gulf of Riga, using RCO and RCA4 NEMO (Wang et al., 2015) simulations from 1961to 2005. Both models were run at a 2 nautical mile (3.7 km) resolution, but with different temporalresolutions. These simulations were used to evaluate spatial variations in the GEV, Gumbel and the 2-parameter Weibull distribution parameters. Both the location (of the GEV and Gumbel distribution) andscale parameter increased towards the end of the Gulf of Finland, whereas the shape parameter (of theGEV andWeibull distribution) stayed relatively constant throughout the studied coastal region. Soomereet al. (2018) also compared results from various parameter estimation procedures, when estimating thedistribution parameters. The results showed that the parameter values depended to certain extent onthe chosen estimation procedure, but the used physical model also affected the parameter estimates.As an extension to the work by Gräwe et al. (2012), Lorenz et al. (2023) analyzed the capability ofGETM to simulate ESLs in the whole Baltic Sea. The model was run for 40 years with various forcingdata sets to evaluate uncertainties related to the atmospheric forcing. Both the GEV distribution andGPD were fitted to the model simulations and the 30-year return level was calculated from the fitteddistributions. The results showed that the return level estimates were relatively independent of the EVAmethod used, with a well-known spatial pattern of higher return levels on the eastern side of the Balticsea and on the west facing coastal regions elsewhere. However, there were large spread in the returnlevel estimates between the forcing data sets, underlining the fact that uncertainties in the return levelestimates are strongly linked with the representation of atmospheric forcing.Over the southern Europe, Marcos et al. (2009) and Marcos et al. (2011) Performed storm surgesimulation studies around the Iberian coastal region and the Mediterranean basin with the HAmburgShelf Circulation Model (HAMSOM) model run on 1=6° × 1=4° resolution (Ratsimandresy et al., 2008).Marcos et al. (2009) evaluated the model’s capability to reproduce observed sea level extremes in thepresent-day conditions, using GPD fitted to five largest values per year. As in the previous studies, themodel-estimated return levels were slightly underestimated in many locations compared to observa-tions. Marcos et al. (2011) calculated spatial projections of storm surge return levels under the 21stcentury climatic conditions, using seven non-stationary (location and scale parameter) variants of ther-largest GEV distribution with r = 5, or using only the annual maxima in regions, where the r-largestGEV fit was poor. They also performed EVA similarly for the negative storm surges. There were markedspatial variations in the parameters of the best performing model (the location parameter modelled asa linear function of time and the North Atlantic Oscillation index (NAO)), which were apparent also inthe spatial return level estimates. Marcos et al. (2012) performed an interesting case study, in which thesame modelling setup with Marcos et al. (2011) was used, but with a quantile mapping post-processingstep to correct for model underestimation, when projecting changes in various return levels under twofuture emission scenarios around the end of the Bay Of Biskay. In addition to a standard EVA, they usedthe simulated changes in the 50-year return level to estimate the spatial extent of coastal flooding in thecity of Bilbao.The first European scale analysis of storm surges was performed by Vousdoukas et al. (2016), who fit-ted the GPD to the Delft3D storm surgemodel simulations (Deltares, 2014) run with several atmosphericand climate model forcings. Model validation against tide gauge observations along the European coast
12



indicated a relatively good overall performance, with some location-specific over- or underestimation oflow and high extremes. By applying EVA to an ensemble of storm surge projections, they were able toderive changes in the simulated return levels up to 500 years, which showed substantial increases in theNorth Sea and Baltic Sea region.On the western North-Atlantic coast, the first physics modelling-based extreme value analysis ofstorm surge was conducted by Bernier et al. (2006). They calculated the 40-year spatial return levelsby fitting the Gumbel distribution to a 40-year long hindcast made with the Princenton Ocean Model(POM) simulation (Mellor, 1998) that was run with an approximately 9 km resolution. Validation againsta set of tide gauge fits showed that the modelled 40-year return level estimates were reasonable with aslight underestimation in some locations. They attributed the underestimation to the limited resolutionof forcing (wind and pressure) fields, which was insufficient to resolve stronger tropical systems in thesouthern parts of themodel domain. Also themodel resolution andmodel limitations in simulating localprocesses affected the results. Muis et al. (2019) studied the spatio-temporal patterns of ESLs and theirdriving factors over the western parts of the North Atlantic region. They used a 28-year long sea levelreanalysis (a combination of past observations with model simulations) generated with the Global TideSurge Model (GTSM) (Muis et al., 2016) and fitted the GPD to storm surges above the 99th percentilethreshold. Due to the short time period used, they focused on return levels only up 10 years. Analysisof the driving mechanisms and their contributions to ESLs showed that extra-tropical cyclones had thelargest contribution in the northern parts of the study domain, with tropical cyclones having a morelocal, but still significant contribution particularly to the most extreme sea levels in the southern partsof the domain.On a global scale, the first physics-based reanalysis of extreme sea levels (GTSM) was provided byMuis et al. (2016). They fitted the Gumbel distribution to the simulated storm surge from 1979 to 2014and concluded that, in regions where extra-tropical cyclones are the main driving factor of storm surge,the modelled return level estimates were reasonable, although there was a general tendency to under-estimate them in comparison to the observations. The same modelling framework was later adapted inother studies (Muis et al., 2017; Wahl et al., 2017), which confirmed the underestimation of return levelswith respect to the observations. Muis et al. (2020) produced a newer global ocean reanalysis in whichthe biases in the 10-year return levels, inferred using the Gumbel distribution, were slightly smaller com-pared to Muis et al. (2016). Yet in another study, Muis et al. (2023) performed a global extreme valueanalysis of storm surges using the GTSM model forced by five climate models from the latest CoupledModel Intercomparison Project (CMIP6) with the GPD fitted above the 99th percentile threshold (otherdistributions were initially evaluated). Climate model simulations had positive biases in the estimatedreturn levels in comparison to a baseline simulation at high latitudes and particularly in semi-enclosedbasins. This bias was attributed to the too intensive storms simulated by the climate models in theseregions.Vousdoukas et al. (2018) provided global probabilistic projections of ESLs, including contributionsfrom mean sea level, tides, and the combined effect of storm surges and wind-waves in their analysis.For storm surges, a similar modelling setup as in Muis et al. (2016) was used. Their EVA was based on amodification to theGEVdistribution andGPDunder non-stationary conditions byMentaschi et al. (2016).They applied the following time-varying normalisation to the observations
x(t) =

y(t)− T (t)

S(t)
; (7)

where T (t) and S(t) are the trend and slowly varying standard deviation of the original time series
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y(t). However, it was not apparent, whether Vousdoukas et al. (2018) applied either the block-maximaor peaks-over-threshold approach in their study.A sophisticated approach to generate global, spatially dependent synthetic extreme sea levels wasdemonstrated by Li et al. (2023). They used 40 years of global sea level reanalysis data produced withGTSM to generate a set of synthetic sea level extremes and spatially dependent return levels along theglobal ocean coasts. Their main aim was to generate a large enough number of events that allowed arobust estimation of rare sea level events and their uncertainty. Analysis locations were clustered up to30 small clusters within ten disjoint coastal regions based on POT time series, using the 95th percentileas a threshold. Li et al. (2023) then fitted a multivariate conditional exceedance model of Heffernan etal. (2004) to the reanalysis to model the joint distribution of 3-day water level maxima. The modellingapproach consisted of first defining the marginal distributions on each analysis location and then calcu-lating pair-wise dependence between the locations within each cluster. More formally, let Fi(Xi) with
i = 1; : : : ; d be themarginal distribution of 3-daymaximumwater levelsXi on analysis location i amongd locations within a target cluster. Each marginal distribution was estimated as a mixture distribution byfitting the GPD above a location-specific percentile threshold ui and an empirical distribution below ui .Then, the individual distributions Fi(Xi) were transformed to a common scale using the Laplace distri-bution (Keef et al., 2013b). This procedure transforms both the upper and lower tail of the distributionto exponential. Next, pair-wise dependencies were estimated using

Y−i |Yi = aYi + Y b
i Z−i ; y > ; (8)

whereY−i is a vector of all marginal distributions apart from Yi (the target location) and  is a thresholdabove which the pair-wise dependence is calculated. The parameter vectors −1 < a < 1 and b < 1describe the strength and variation of the dependence, respectively. VectorZ−i contains d−1 residualsindependent of Yi . A quantile-based estimation procedure for Z−i is used as described by Keef et al.(2013a). The calculation of pair-wise dependence was repeated for each pair of locations within eachcluster.In the final step, synthetic, spatially dependent sea level events were generated stochastically usingthemultivariate conditional exceedancemodel. For doing this, Li et al. (2023) estimated the distributionof annual event counts within each cluster from the 99th percentile exceedances of the 3-day maximumsea level time series separately at each analysis locationwith a kernel-based approach. By sampling fromthe kernel distribution, time series of event counts corresponding to 10000 years of extreme sea levelevents were obtained. The sampled events were distributed within each cluster such that the propor-tion of extreme sea level events at each location matched the empirical estimates calculated from thescaled distributionY. The conditionalmodel was sampledwith the correct proportions and the obtainedsynthetic ESLs were finally used to calculate return levels empirically from the sample. Li et al. (2023)argued that the empirical estimation approach does not suffer from the same limitations as the theo-retical models (e.g. difficulties in estimating the shape parameter) and that the sample size is sufficientto estimate 1000-year return levels. It should be noted, however, that their model inherently assumesthat the tail of the source data distribution follows the GPD. Simulation experiments showed that theirmodel provided good performance in comparison to the reanalysis data set, with slight underestima-tion of return level values for long return periods. Furthermore, a comparison against historical eventsshowed that the model is able to simulate realistic spatial dependence.To conclude, physics-based modelling allows to gain physically consistent spatial information aboutESLs and gives insights in the physical factors governing them. Furthermore, future changes in the storm
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surge extremes can be analysed. However, in many cases the limited temporal span of simulations re-stricted the analysis of return levels such that relatively commonly occurring sea levels (e.g. 10-yearreturn level) were targeted. Furthermore, studies often incorporated relatively simple extreme valueanalysis methods such as the GEV distribution and GPD. The most comprehensive EVA models reviewedwere the ones applied by Butler et al. (2007b), who used a non-parametric model to capture spatio-temporal variations in the location and scale parameter of the GEV distribution and Li et al. (2023), whoimplemented a stochastic sampling scheme, whichwas capable to generate very long, realistic, synthetictime series of ESL events.
4.2 Regional frequency analysis (RFA)
A form of spatial analysis in which all observations are pooled together over a region is called regionalfrequency analysis (RFA), as described in its original form by Dalrymple (1960). For a formal description,let us haveN tide gauges with ni observations available at each gauge i so that the overall observationsare Yi j , for j = 1; : : : ; ni . Also, let us define the local quantile function corresponding to a cumulative
probability F as Yi(F ), 0 < F < 1. The regional frequency distribution Ŷ (F ) is defined as Ŷ (F ) =
Yi j(F )=—i , where —i is a site-specific index-flood that describes the site specific traits of the observedfrequency distribution. Not that —i should not be confused with the location parameter of the GEVdistribution. Alternatively —i is also know as the surge index (Bernardara et al., 2011) or the local index.We will use latter term hereafter (Weiss et al., 2013).The main assumption in RFA is that the frequency distributions belonging to a certain group of sitesare similar apart from the scaling factors —i . There are several ways to define —i . The distribution meanor some other central statistic is often used, although distribution quantiles or some high sea level value(Bardet et al., 2011) have also been tested for this purpose. Other physical quantities can also be consid-ered when calculating the local index, which in principle allows to make some estimations at un-gaugedsite.In practice, the calculation of regional frequency curves in RFA proceeds according to Hosking et al.(1997) as follows:

1. Data is first screened for homogeneity and inconsistencies are eliminated
2. Observationswithin the regionof interest are categorised into approximately homogeneous groupsaccording to their distributional similarity.
3. The observations are then standardised using the local index.
4. A suitable probability distribution is chosen based on goodness-of-fit tests and then fitted to ob-servations either at each site or to the whole regional data after which the results are pooledtogether to get the regional frequency distribution.
A useful concept related to RFA is the effective durationDef f , which describes the equivalent recordlength obtained by pooling data together from multiple sites. The value of Def f strongly depends oninter-site dependence, i.e., the number of independent observations and is somewhere between thelength of the longest tide gauge record (perfect inter-site dependence) and the total length of the pooledtime series (no inter-site dependence). Weiss et al. (2014b) provide a formulation overN tide gauges as

Def f =  
PN

i=1 di=N, where di is the length of time series at tide gauge i and  = –r=–;  ∈ [1; N] is a
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measure of inter-site dependence given as the ratio of average annual number of storms within a region
–r to the average annual storminess at individual sites –. Thus,Def f directly summarises the benefit ofpooling the observations with RFA.A critical part of RFA is the assessment whether the observations from a certain region are homo-geneous enough. Various ways for this have been suggested in the literature. Bernardara et al. (2011)tested regional homogeneity using a regional heterogeneity measure H and a local discordancy mea-sure Di . Both measures are based on the so-called L-moments, which provide an alternative system todescribing the distribution moments. The basic idea of the heterogeneity measure H is to compare thedispersion of certain sample L-moment ratios of individual tide gauges with the sampling variability ofa homogeneous group of tide gauges. A homogeneous region is simulated from a Kappa distribution,whose parameters are estimated using the regionally weighted L-moment ratios. The fitted distributionis then used to generate a large sample of synthetic observations from which the sampling variabilityis estimated. Hosking et al. (1997) provides guidelines how large a dispersion is allowed in the local L-moment ratios for a region to be considered homogeneous. On the other hand, Discordancy measure
Di measures whether any single tide gauge is toomuch in discordance with the other tide gauges withina region, using again the L-moments. As such, it can also be used for screening gross outliers before ahomogeneous region is defined from the study sites. More information about both measures can befound from Hosking et al. (1997).One additional difficulty in using RFA with storm surges is the possible temporal dependence be-tween the gauges, which reduces the effective sample size of the pooled data. This aspect is often takeninto account rather crudely due to the difficulty to distinguish between physically independent events(i.e., are there one or more storms causing high sea levels within a region over a short time window)and finding methods to cope with the inter-site dependencies. The simplest approach is to leave outother observations other than the highest one within a certain time window (Bernardara et al., 2011;Bardet et al., 2011), but doing this useful data will likely be lost. Weiss et al. (2014b) provide a theoreticalframework for accounting for inter-site dependencies in the POT framework for extreme wave heights.Some studies have also tried to automatize the definition of homogeneous regions. The frameworkproposed byWeiss et al. (2014a) includes a clusteringmethod based on the concept of a storm footprint,which can be used to assess the strength of inter-site dependencies. Another approach was recentlysuggested by Andreevsky et al. (2020) for defining statistically and also physically homogeneous regionsby using the extremal coefficient between two sites as ȷ(X; Y ) = limn→∞ P [X > q1|Y > q2], where q1and q2 are some extreme surge quantiles of site specific random variablesX and Y . The extremal indexstems frommultivariate extreme value theory as a measure for the dependence between the extremes.As there are various definitions for the local index, there is a certain level of subjectivity in selectingthe local index. Some guidelines are given by Hosking et al. (1997). Weiss et al. (2013) performed a com-parison of four differentmethods for calculating the local index. They showed that the distributionmeantends to provide reasonably robust results for local scaling, whereas in case of asymmetric distributions,other indices could also be considered.We now summarise the main findings from the reviewed articles. The earliest found study whichperformed RFA on storm surges was made by Bernardara et al. (2011) along the French Atlantic coast on18 tide gauges, using the GPD. They concluded that although GPD did not provide a completely satisfac-tory fit to the regional data, the fit was much better compared to the site-specific fits due its capabilityto provide higher return levels. Also the uncertainty in the return level estimates was reduced.Bardet et al. (2011) performed RFA also using long-term tide gauge time series from the French At-lantic coast. They compared a mixed exponential distribution with an exponential distribution and the
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GPD in providing regional return level estimates, and concluded that the mixed exponential distributionprovided the best fit to the data. In line with the study of Bernardara et al. (2011), their results showedthat the regional 1000-year return level estimates were consistently larger at tide gauge locations thanthose obtained with the site-specific fits.Weiss et al. (2013) provided guidelines for selecting a suitable local index under various levels ofinter-site dependence, regional heterogeneity and distributional asymmetry. Out of the four tested localindices, they suggested of using the distribution mean as the local index, when the region is sufficientlyhomogeneous and the local distributions are symmetric. In the presence of asymmetry or for slightlyheterogeneous observations, other indices such as the location parameter of the fitted (GEV or GPD)distribution could also be considered. They also demonstrated the differences on return level estimatesbetween the tested local indices in a case study, which included 16 tide gauges from the British coastalregion. The results showed that choosing a sub-optimal local index has a deteriorating effect on theestimated return levels. Overall, there is no a uniqueway to define the local index and improper selectioncan have an adverse effect on the return level calculations (Weiss et al., 2013).Frau et al. (2018) attempted to include historical storm surges outside the continuous observations tothe RFA, using theGPDas the distributionalmodel. Their approachwas based on the assumption that theaverage occurrence frequency of storms –, which corresponds to a certain high quantile threshold, hasstayed constant over time. They then defined the concept of credible duration Dcr , which is in essence
Def f that takes into account the historical duration due to the historical observations. For example, asingle historical observation included with the threshold – = 0:1 would correspond to an increase often years in Dcr . It should be noted that the notion of Dcr is only useful for the peaks-over-thresholdapproach. By assuming a constant – over the whole observational period, they were able to includehistorical records in their RFA approach. Using a large number of tide gauges from the French and Britishcoastal region, they demonstrated that the inclusion of non-continuous historical observations lead toan increase in the credible duration and higher return level estimates in comparison to the case, wherethe historical observations were not used.Lastly, Andreevsky et al. (2020) described a method for defining homogeneous regions in a morephysically meaningful matter, using the concept of empirical spatial extremogram (ESE). They used ESEsto construct homogeneous regions for three target sites in France and showed that the defined regionswere more homogeneous than those provided by Weiss et al. (2014a), although the 1000-year returnlevel values were relatively similar in both studies.While the aforementioned studies have illustrated that pooling observations with RFA increases therobustness of the estimated occurrence probabilities of extreme sea levels, when the gauge sites arereasonably homogeneous, it has some shortcomings. Most importantly, RFA does not account for de-pendencies between separate regions and does not easily allow using covariate information in the ex-treme value modelling step, although this has been suggested in the literature (Hosking et al., 1997).Also, choices regarding the various steps and parameters in RFA pose some challenges for the practicaluse of this method in real-world cases.
4.3 One-dimensional spatial modelling
A natural extension to the univariate, point-wise modelling is to handle the coastal region of interest ina one-dimensional manner, for example using the distance and other covariates along the coast of thetarget region as predictors. Compared to full-fledged spatial modelling, the one-dimensional modellingapproach is substantially simpler, as there is no need to design and model complex two-dimensional

17



fields of extremes and their dependence structures. Various one-dimensional approaches have beensuggested in the literature. Here, we discuss their main points in a chronological order.One of the first efforts to model sea level extremes with a one-dimensional spatial model was madeby Coles et al. (1990), who modelled the GEV distribution parameters using a parametric model, withthe distance along the coast of Britain as a covariate. They also tried to capture the underlying surgeand tide-surge interactions in their model formulations. A multivariate extreme value distribution wasconstructed assuming that i) sites are conditionally independent such that for the neighbouring sites i ,
j and k , the annual maxima Yi and Yk are independent given Yj and ii) the dependence between theneighbouring sites can be modelled using a logistic dependence structure. These assumptions lead tothe following bi-variate probability density between two tide gauges (Coles et al., 1990)
f (y1; y2) = (ff1ff2)
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with ỹi = [1− ki(yi − —i)=ffi ]
1=ki , for i = 1; 2. Note that Coles et al. (1990) used the definition k = −‰.The strength of the dependence is governed by r ≥ 1, such that when r = 1 the two sites are completelyindependent and when r → ∞ they are completely dependent. The GEV parameters were modelled at

N sites as a function year j and distance di with respect to a reference position as
—i = ¸i + j˛i + ffi ln Ĩ(ffi) (10)
ffi = exp(˛0 + ˛1di + ˛2d

2
i + ˛3d

∗
i ) (11)

ki = ‚0 + ‚1di + ‚2d
∗
i (12)

for i = 1; : : : ; N. In Eq. 10, ¸i and ˛i are the regression coefficients to be estimated and ffi ln Ĩ(ffi)describes both the tidal effect and the relationship with ffi . The details of Ĩ(ffi) can be found from Coleset al. (1990). This shows that the location parameter does not directly depend on the distance along thecoast. The scale (Eq. 11) and shape (Eq. 12) parameters have a second and first order polynomial depen-dence on di , respectively. Furthermore, the covariate d∗
i is the distance from an estuary mouth, usedif the tide gauge is located within an estuary. Model diagnostics inspected over eight coastal stretchesshowed that in reality, a simplified version of the model usually provided a better fit to the data thanthe complete model. In some locations, the distance from the estuarine mouth was found to explainvariations in the scale and shape parameter values.Assuming that the marginal distribution Gi at tide gauge i is a GEV distribution such that Yi ∼

GEV(—i ; ffi ; ‰i) for i = 1; : : : ; N, Coles et al. (1990) tested the following spatial multivariate extremevalue distribution
Pr{Yi ≤ yi : i = 1; : : : ; N} =

"
NY
i=1

Gi(yi)

#B(w)

; (13)
where B(w) is a dependence function and w = {w1; : : : ; wN} a vector of weights, whose componentsare defined aswi = lnGi(yi)= ln[

QN
j=1 Gj(yj)]s for i = 1; : : : ; N. A logisticmodel described inmore detailin Coles et al. (1990) was used for B(w) with dependence the on semi-diurnal tidal phase and distancebetween the tide gauges. The main motivation for using this model was to test how strongly spatialdependence of ESLs is related to the propagation of storm surge along the coastlinewhile simultaneouslyaccounting for the tidal phase. Coles et al. (1990) concluded that at short distances surge progressionand topography might be the dominant factors explaining the inter-site dependence.Dixon et al. (1992) extended the model of Coles et al. (1990) to account for spatial dependence inthe temporal trend of the location parameter of the GEV distribution. They used a local-linear weighted
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least-squares estimator to estimate the trend parameter ˛i from Eq. 10 on site i as ˛j = ‚i ;0 + ‚i ;1dj +
›j ; for all j ∈ Nm(i), where the neighbourhood of site i is defined as Nm(i) = j : i −m < j < i +mand ›j are zero-mean random variables with variance 2j . The distance dj was defined circularly over thewhole coastal region. The local trend estimates were then smoothed using a Gaussian kernel function.Later, a similar strategy was adopted by Dixon et al. (1998), who used a kernel regression approach toderive spatial estimates of distribution parameters between the tide gauge locations in the British coastalregion. Their method was built upon the so-called joint probability method (JPM) (Pugh et al., 1980) andits revised version (RJPM) (e.g., Tawn et al., 1989), denoted as the spatial RJPM (SRJPM) hereafter. Themodel for the probability of sea level Zt at time t to exceed some high value z was

H(z) = Pr
„

max
1≤t≤T

Zt ≤ z

«
≈
(

TY
t=1

FX|Y (z − Xt)

)„Z

; (14)
where 0 < „Z ≤ 1 is the extremal index thatmeasures the degree of clustering of the extremes and FX|Yis the conditional distribution function of the hourly surge Y with respect to the tidal levelX. This modelaimed at accounting for tide-surge interactions, which might be important in shallow water regions. Themodel can also be applied in case tide and surge are independent.Starting from the tide-independent case, Dixon et al. (1998) assumed that the surge time series fol-lowed the GEV distributionGEV(—Y ; ffY ; ‰Y ), but used a non-homogeneous Poisson process to estimatethe parameters, as this allowed to use all hourly (declustered) surge values in the parameter estimation.For the tide-surge interaction case, Dixon et al. (1998) first normalised the hourly surge time series using
St = (Yt − a(Xt))=b(Xt). This stabilises the surge time series (reduced non-stationarity) and allows touse the same parameter estimation procedures as in the tide-independent case by replacing the originalGEV parameters with

—Y (Xt) = —Sb(Xt) + a(Xt), ffY (Xt) = ffSb(Xt) and ‰Y (Xt) = ‰S; (15)
where —S, ffS and ‰S denote the parameter estimates obtained from the normalised surge time se-ries and a(Xt) and b(Xt) are parameters specified from data. Both the tidal component and the surgeconditional on tides were estimated spatially in order to calculate return level estimates for the jointdistribution. The parameters related to the surge distribution at any coastal distance d were calculatedfrom the tide gauge specific parameter estimates using a univariateweighted kernel regression approach(Dixon et al., 1998). The results showed that the spatial model extension provided less biased estimatescompared to a naive alternative in which the return levels were directly interpolated between the datasites. The spatial model by Dixon et al. (1998) was further compared by Haigh et al. (2010) against fourindirect methods (GEV, r-largest GEV, JPM and RJPM) on the British coast. Their main conclusion wasthat SRJPM overestimated return levels in locations, where there were only short sea level time seriesavailable, but this mismatch could have been caused by the differing length of data used to estimate theSRJPM parameters.More recently, Räty et al. (2023) used a flexible, non-parametric models to capture the distancedependence of the GEV parameters along the Finnish coast. They used a hierachical Bayesian modellingapproach with both penalised splines and Gaussian processes in a regression setting, when estimatingthe location and shape parameters of the GEV distribution along the coast. Their results showed that thereturn level estimateswere less uncertainwhen including distance dependence in theirmodel comparedto single-site fits.
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To summarise, while the one-dimensional extreme value modelling approaches provide an improve-ment over univariate approaches that assume independence between the tide gauges, their use wasearlier motivated at least partly by the fact that the computational tools andmodelling capabilities werenot matured enough to enable full spatial modelling. Moreover, many of these methods estimate someof the model parameters using ad hoc methods without clear guidelines on how to choose the valuesfor these parameters.
4.4 Full spatio-temporal modelling
Models that fully capture the spatio-temporal nature of ESLs have recently been started to apply to bothobserved and modelled sea level extremes. Most of the reviewed methods were based on a Bayesianhierarchical modelling (BHM) approach with different techniques to describe the spatial process. Onestudy stochastically generated synthetic sea level extremes from a spatial process for further analysis.The small number of found articles highlights the fact that this type of models have rarely been appliedto sea level extremes in the study region.The earliest found study was conducted by Beck et al. (2020), who used a copula-based approachto spatially model storm surges on the Atlantic coast of Canada, using incomplete observations from 21buoys over the years 1966–2015. IfY = {Y1; : : : ; YN}withN = 21 is a randomvector of observed annualmaximum sea level and assuming that the observations followed the GEV distributions, the posteriordistribution of all model parameters∆ = (Θ; ”; ‰) was described by Beck et al. (2020) using the Bayes’rule as

p(∆|Y) ∝ p(Y|Θ; ‰)p(Θ|”; ‰)p(”; ‰): (16)
In Eq. 16, Θ = („1; : : : ; „N) with „i = (—i ; ffi) for i = 1; : : : ; N contains the GEV location and scaleparameters of marginal distributions at locations si and ” is a vector of model hyper-parameters. Thus,the hierarchical model is described by the three terms on the right-hand side of Eq. 16, which denotethe data layer, process layer and the prior layer, respectively.In Beck et al. (2020), the joint distributionH of observationsY, given parametersΘ and ‰ (data layer),wasmodelled following Sklar’s theorem. Given a copulaC andmarginal distributionsGi for i = 1; : : : ; 21that were assumed to be GEV distributions, the joint distribution was expressed as

H(y1; : : : ; y21) = C [G1(y1); : : : ; G21(y21)] (17)
There are various parametric forms available for the copula C. Beck et al. (2020) used Student’s tcopula as their model for C, with its correlation matrix being estimated using the exponential correlo-gram. The authors noted that it is often difficult to work with copulas in high dimensional setting, asis the case in their article. Student’s t copula was chosen, as it allows to estimate the joint distributioneven if there are data missing from some of the buoys and as it is capable to capture tail dependenceeven though it is not an extreme value copula.In the process layer, the location and scale parameter of individual GEV distributions were modelledusing latent Gaussian processes as

— ∼ N21(X—˛—; fi
2
—Σ—) and (18)

Φ ∼ N21(XΦ˛Φ; fi
2
ΦΣΦ): (19)

In this equation, — = (—1; : : : ; —21) and Φ = (ln(ff1); : : : ; ln(ff21)) and the design matrices X— and XΦcontain p covariates (and the intercept) for the site-specific GEV location and shape parameters, with
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vectors ˛— and ˛Φ containing the associated coefficients. Furthermore, Σ— and ΣΦ are the correlationmatrices with variance parameters fi2— and fi2Φ that are assumed to be constant over the whole domain.Sea-level pressure was included as the only physical covariate in themodel. In the parameter layer, priordistributions were specified for ten hyper-parameters. To simplify themodel, Beck et al. (2020) assumedthat the priors were mutually independent and non-informative (i.e. wide) with suitable limits addedto them to avoid non-identifiability issues, which are common in Gaussian process models. A customMarkov Chain Monte Carlo algorithm was used to sample from the posterior parameter distribution.Comparison of return level estimates obtained with single-site GEV fits and the BHM showed thatthe values were systematically higher for the BHM, although this could be attributed to the choice ofusing the median as the summary statistic, which deviates from the mean for non-symmetric distribu-tions. However, uncertainty ranges were markedly larger for the single-site fits and covered unrealistic,negative values in some locations, whereas the BHM was able to provide more meaningful uncertaintyranges. The latent process description of the GEV parameters readily allowed to interpolate the parame-ters to ungauged locations, and the surge process could be simulated using the copulamodel to generatesynthetic storm surge realisations. This is amajor advantage over the one-dimensional models discussedin the previous section.An alternative approachwas described by Calafat et al. (2020), who applied a hierarchical max-stablemodel to generate a probabilistic reanalysis of ESLs in the North Sea region. A max-stable process is aninfinite-dimensional generalisation of the univariate GEV distribution. FollowingDavison et al. (2015) andSchlather (2002), let {Yi(s)} for i = 1; 2; : : : ; n be i.i.d. replicates of a spatial random fields on s ∈ Rd .A spatial random process Z(s) is a max-stable process, if there exist continuous functions an(s) > 0 and
bn(s) such that

Z(s) = lim
n→+∞

maxni=1 Yi(s)− bn(s)

an(s)
: (20)

By this definition, the univariatemarginal distributions ofZ(s) are also GEV distributions (Eq. 1). Many ofthe parametric forms for the max-stable process have been derived from the spectral representation ofHaan (1984), which facilitates the use of max-stable processes in real-world problems. Some of the well-known parametric forms are described by Davison et al. (2015) and Dey et al. (2016). An important partof these models is the formulation of the spatial covariance structure, which also defines the spatialextremal dependence. For a finite set of n points from Z(s), spatial dependence is described by theextremal coefficient „ according to
Pr[Z(s1) ≤ z; : : : ; Z(sn) ≤ z ] = exp(−„n=z): (21)

In Eq. 21, the extremal coefficient 1 ≤ „n ≤ n such that the lower (upper) bound corresponds to perfectdependence (independence). Often, the bi-variate (n = 2) extremal coefficient is considered, as it ismore practical to work with compared to higher dimensional cases. In practice, „ is typically estimatedfrom the empirical counterpart obtained from data, for example using the F-madogram (Cooley et al.,2006).The implementation of the max-stable process by Calafat et al. (2020) is based on the work by Reichet al. (2012), who provided a Bayesian description of the so-called residual max-stable process. Themodel is a finite approximation to theGaussian extreme value process by Smith (1990) butwith an addednugget term to account for the overly smooth spatial fields by the latter model and also to improve thecomputational stability. Noting the time-dependent annual maximum surge as Yt(s) and assuming thatit is max-stable, the marginal distributions of observations were described as GEV(—t(s); fft(s); ‰). To
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simplify calculations, Calafat et al. (2020) assumed that the shape parameter stayed spatially constant.For the observations layer, the model likelihood stands as
Yt(si)|„t(si); —t(si); ff(si); ‰; ¸

ind∼ GEV(—∗
t (si); ff

∗
t (si); ¸‰); (22)
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‰
(„t(s)

‰ − 1); (23)
ff∗(s) ∼ ¸ff(s)„t(s)

‰: (24)
Thus, it is assumed that the annual maxima at site si is independent conditional on the model param-eters. Calafat et al. (2020) defined climatological dependence as spatial dependence in the GEV dis-tribution parameters, which is captured by —t(s) and ff(s). Residual dependence, which describes howindividual sites are affected by the same storm, wasmodelledwith the spatial residual process „t(s). Thestrength of the residual dependence is governed by ¸ ∈ (0; 1) such that when ¸ → 0 there is strongresidual dependence and when ¸→ 1 residual dependence vanishes.The spatial residual process evaluated over L spatial knots is defined as

„t(s) =
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1=¸

!¸
; (25)

where wl(s) ≥ 0 are scaled Gaussian kernel functions with temporally and spatially varying coefficient
At;l that follow a positive-stable distribution described inmore detail by Stephenson (2003) and Reich etal. (2012). Using the positive-stable distribution ensures that the model is max-stable. To allow smoothvariations in the location parameter, Calafat et al. (2020) used spatiotemporal integrated random-walkwithGaussian processes (Rasmussen et al., 2005). At time t = 0,—t=0(s) ∼ GP(xT (s)˛—; c(s; s′; ‚—0; ȷ—0)),where the design matrix xT (s) contains the intercept and the width of the continental shelf at location
s with regression coefficients ˛—. Note that this covariate is unlikely informative in shallow basins suchas the Baltic Sea basin, and some other covariate more descriptive about the bathymetry could be moresuitable. The covariance function c was modelled using the Matérn covariance function (Rasmussenet al., 2005), with the spread ‚—0 and length scale ȷ—0 estimated from the data. The trend term and therandom-walk jump were modelled as zero-mean Gaussian processes with their own covariance struc-tures. Similarly, the logarithm of the scale parameter log ff(s) was spatially modelled using Gaussianprocesses, but without temporal dependence. The rest of the details of the model can be found fromCalafat et al. (2020).The model was extensively validated with synthetic data generated from the model with known pa-rameters, real-world observations and also using a storm surge reanalysis. All tests showed that themodel generated adequate probabilistic reanalyses, with realistic uncertainty bounds and high correla-tion with the observed annual maxima. The return level values were more reliable than the single-siteestimates, for which the estimated uncertainties were roughly twice as large as that of the hierarchicalmodel. The results were less robust in some very localised cases, where the observations were starklydifferent between two neighbouring tide gauges. This could happen, when individual annualmaxima arelinked with very local storms and whose impact might be difficult to capture with the model. However,the GEV parameters weremodelledwith a high confidence to at least few hundred kilometers away fromthe nearest tide gauges, as they tend to vary rather smoothly across the domain.A modified version of the same model was later used by Calafat et al. (2022), who estimated thecontributions of internal climate variability and external forcing on storm surges in the same region as
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Calafat et al. (2020). In their model, the scale parameter was kept constant and the contributions ofinternal climate variability and external forcing (through mean sea level changes) were incorporated inthe integrated random-walk model for the location parameter. Their model was able to separate thespatial fingerprint of external forcing from the internal variability, which were then used to estimatethe relative contributions of both factors to the spatial trends. They concluded that the internal climatevariability can have a large opposite effect to the storm surge trends in comparison to external forcing,which underlines the need to account for the non-stationarity when calculating return level estimates.Max-stable processes were also used by Rashid et al. (2024), who stochastically generated extremevalue realisations from amax-stable process, using 41 tide gauges with 68 years of data along the coastalregion of the United States. While the implementation details of the used max-stable process were notspecified in the article, according to the code accompanied by the paper they fitted the Gaussian ex-treme value process model, the so-called Schlater’s model (Schlather, 2002) with different covarianceformulations and the Brown-Resnick model (Brown et al., 1977) with three regression formulations forthe location and the scale parameter to the observations. Using the best fitting model, they gener-ated a 10000-member ensemble of annual storm surge maxima along the coastal region of the UnitedStates, using annual maximum storm surges from the GTSM reanalysis. As their max-stable model gen-erated samples that were temporally uncorrelated with the observations, spatiotemporal variability ofthe synthetic samples was matched with the observed annual maxima by re-ranking them according tothe rank-ordering of the observed storm surge maxima. Ranks in ungauged locations were calculated asdistance-weighted averages from the ranks of the two nearest tide gauges. This procedure was basedon the assumption that the closest tide gauges provide sufficient information about the storm surge ata particular location of the coast, although for locations farther away from tide gauges, this assumptionmight not completely hold.Validation of their approach showed that the synthetic annualmaximawere slightly too large inmanylocations, although the error statistics were dominated by a single tide gauge in the Florida coast. Also,the uncertainty range in the estimated return levels was again substantially smaller compared to thesingle site fits. A major benefit of their approach is that it is feasible to generate a very large sample ofsea level extremes, which allows to effectively quantify the uncertainty in the simulated values.To conclude, fully spatial models provide the most comprehensive approach, along physics-basedmodelling, to assess sea level extremes in a spatially consistent way and can also be used to generatesynthetic time series with appropriate data models. However, these methods can be computationallyexpensive and their use is currently limited in the large scale applications. Furthermore, their use is lessstraightforward in real-world studies compared to most of the simpler methods.
4.5 Satellite-based analyses
An alternative source of spatial information on sea level extremes is provided by global satellite altimetry.Two articles using satellite datawere found that cover the study region. Lobeto et al. (2018), studied non-tidal residual storm surge on the US eastern coast using remote sensed sea level height from satellitealtimetry. They fitted a non-stationary GEV distribution to the satellite observations and then correctedthe spatial return level estimates zSATri

with an extreme scale factor according to the equation
zSAT′

ri
= ESFzSATri

= (0:65KEP + 0:35KW)zSATri
: (26)

In this equation, KEP and KW are parameters that describe the effects of exposure to the open oceanand the width of the continental shelf on the estimated return levels, respectively. The scaling factors
23



were optimised using return level ratios with respect to the closest tide gauge ffiri = zSAT′

ri
=zTGri thatwere defined according to the strength of correlation between the satellite and in-situ measurements.The scaling was designed to address errors, which are caused by missing satellite data and decreasingaccuracy near the shore. After the scaling, the mean relative error was decreased substantially (from86% to around 10%) in eight out-of-sample tide gauge locations. Their results showed that the developedmethodology addressed some of the limitations of satellite altimetry data, which hamper their use inextreme value analysis and also helped to carry out spatiotemporal assessment of extreme sea levels.Recently, Bij De Vaate et al. (2024) assessed the usability of global satellite-derived non-tidal residualstorm surge for extreme value analysis, using 29 years of data from eight low-resolution mode satelliteradar altimeters. They also used a non-stationary GEV model to cover full spatio-temporal variationsin the sea level extremes. The satellite data was stacked on a 5° × 5° grid to increase the amount ofdata points in each grid box. Furthermore, a slightly different type of scaling compared to Lobeto et al.(2018) was applied to the GEV location and scale parameters in order to reduce the effect of under-sampling when estimating these two parameters. The scaling was performed using the GTSM oceanreanalysis instead of in-situ observations, as it was considered to better represent conditions over openocean. The GEV distribution was fitted locally to 25 random sub-samples of the reanalysis time seriesafter they had been trimmed to match the length of the local satellite time series. The scaling factorswere then estimated by minimising the root-mean-squared-error between the GEV distributions fittedto the full and sub-sampled reanalysis time series with the median over the 25 samples used as the bestestimate for the scaling factors. The results showed that the scaling factor for the location parameterwas typically less than one, meaning that undersampling likely lead to overestimation of its values. Incontrast, the scaling factor for the scale parameter showed less systematic variations throughout theglobal oceans. Bij De Vaate et al. (2024) concluded that while satellite altimetry data allows to estimatespatial variations in the global sea level extremes to certain extent, the coarse temporal resolution andthe sensitivity to sea-ice make their use questionable at higher latitudes.

5 Conclusions
Wehave reviewed 37 articles, which considered some form of spatial extreme value analysis in the NorthAtlantic and Baltic Sea region. The reviewed articles were classified into five categories: 1) physics-based2) regional frequency analysis, 3) one-dimensional, 4) fully spatial and 5) satellite-based extreme valueanalysis studies. The most common approach to spatial extreme value analysis was to run a physicalmodel and then apply EVA to the simulated sea level. Models, by definition, provide physically consistentand spatially comprehensive data for analysis and are indispensable for climate change assessments ofsea-level extremes. However, physical models are computationally heavy to run, and do not necessarilyresolve local-scale features in storm surge behaviour. Furthermore, the results are to certain extent sen-sitive to atmospheric forcing used to drive themodels. Regional frequency analysis and one-dimensionalspatial models provide a simplified approaches to spatial modelling. The former pools observations overa certain region to increase the sample size, while the latter one typically applies statistical analysis overa coastal region, using the distance as an explanatory variable for the distribution parameters. Thesemethods are usually simpler to apply than fully spatial models, but have limitations on how they capturethe spatial dependency. Fully spatial models, on the other hand, particularly when applied to physi-cal model data provide perhaps the most comprehensive approach to EVA, as they directly account forspatial dependence in sea-level extremes. Many methods also allow to generate spatial realisations of
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extremes from their data models. Although being rather complex and in some cases computationallyheavy, these methods deserve a further inspection within MAWECLI.One avenue worth further exploration is machine learning-based modelling of sea level extremes.While machine learning has been applied to storm surge prediction, there seems not to be many ap-plications that also include EVA, particularly within the region of interest. An example of such a studywas conducted by Rohmer et al. (2023), who used machine learning to increase the sample size whenanalysing wave height extremes in the Caribbean Sea region. It is expected that machine learning basedmodelling studies of extreme sea levels will gain popularity in the future.
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