D1.1.4
Review of spatial modelling of sea level extremes

Olle Raty and Marko Laine
19.12.2024

MAWECLI (MArine and WEather events in the changing CLImate as

potential external hazards to nuclear safety) project in the
SAFER2028 Programme



Finnish Meteorological Institute
P.O. Box 503

Fl-o0101 Helsinki, Finland
www.fmi.fi



Contents

1 Introduction
2 The review framework
3 Preliminaries

4 Spatial extreme value modelling approaches
4.1 Physics-based modelling . . . . . . . . .o
4.2 Regional frequency analysis (RFA) . . . . . . . . . . . e
4.3 One-dimensional spatial modelling . . . . . . . ... .. ... ... . ... .. ....
4.4 Full spatio-temporal modelling . . . . . . . . . . ... . . .o
4.5 Satellite-based analyses . . . . . . . . . . e

5 Conclusions
6 Acknowledgments

References

10
10
15
17

23

24

25

25



Abstract

This report summarises a review of studies from the North Atlantic and Baltic Sea region, in which some
form of spatial extreme value analysis was applied to storm surges. The 37 reviewed papers were cat-
egorised into 1) physics-based, 2) regional frequency analysis, 3) one-dimensional, 4) fully spatial and
5) satellite-based approaches. Studies based on physical modelling were the most numerous, likely be-
cause physical models directly provide spatial data for extreme value analysis without a need for using
complex spatial statistical models. While there was a limited number of fully spatial modelling studies
applied to storm surges in the study region, Bayesian hierarchical modelling with max-stable processes
seemed the most promising for future research purposes. This approach allows for modelling the spa-
tial dependence in the annual maxima and the extreme value distribution parameters at hand and also
provides means to simulate spatial realisations of sea level extremes.

1 Introduction

In the Baltic sea region, reliable modelling of occurrence probabilities of sea level extremes is important
for coastal planning, as the impacts of high sea level range from coastal erosion and habitat destruction to
human losses (Rutgersson et al., 2021). The magnitude of extreme sea levels (ESLs) depends jointly on a
multitude of physical phenomena such as moving low pressure systems, long term sea level changes and
internal oscillations, which may or may not occur simultaneously. In the Baltic Sea, tides are relatively
unimportant with some regional exceptions (Medvedev et al., 2016), but in many other parts of the
world their inclusion is integral for proper analysis of sea level extremes.

Several strategies have been developed for estimating occurrence probabilities of high sea levels,
both in the present and changing climate. Often the estimates are calculated using univariate approaches,
in which only point-wise estimates of occurrence probabilities of, e.g., annual sea level maxima are pro-
vided. The most widely used approaches are the block-maxima approach, leading to the generalised
extreme value distribution (GEV), and the peaks-over-threshold approach, using the generalised Pareto
distribution (GPD) as a model for threshold exceedances. There are also other slightly different distri-
butional choices based on the aforementioned ones such as the r-largest GEV distribution. An overview
of these approaches is given in Coles (2001), but their main properties will also be summarised in this
review.

A natural extension to univariate modelling of sea level extremes is to account for spatial (and tem-
poral) variations in the extremes. The motivation of using spatial models is obvious. By taking the spatial
dependence into account, estimates of occurrence probabilities and corresponding return levels are im-
proved (less biased and less uncertain) over data-sparse regions. Most spatial modelling approaches can
be used to calculate return level estimates of storm surges between tide gauge locations and can also
directly simulate time series of sea level extremes in ungauged locations.

Extreme value analysis (EVA) studies can be roughly divided into two categories. The first one cov-
ers different physics-based modelling approaches, in which hydrodynamic simulations are performed to
provide information about sea level variations. These are then used, potentially with additional covari-
ate information, to analyse statistics of sea-level extremes (often using univariate extreme value analysis
approaches) in the present-day and changing climate. The second category covers methods, in which
EVA is performed on some form of sea level observations, although these approaches may additionally
use model simulated quantities to facilitate spatial and temporal modelling of the extremes.



One approach to include spatial information to the extreme value modelling is to apply the so-called
regional frequency analysis (RFA) (Hosking et al., 1997). In RFA, suitably standardised data is pooled
over a region of interest according to certain rules in order to improve the reliability of the estimated
probabilities for rare events. However, more attention has been recently given to more complex spatial
models which explicitly model the spatial dependence of sea level extremes. A downside is that fully
spatial models are often substantially more complex than the more traditional EVA approaches.

Statistical models for spatial extremes have been applied to observed and simulated data of many
meteorological variables such as precipitation (e.g., Cooley et al., 2007; Sang et al., 2010; Reich et al.,
2012). However, less work seem to be made with respect to sea level extremes. To advance work related
to modelling of sea level extremes within the MAWECLI project framework, we make a systematic lit-
erature review of recent work on spatio-temporal modelling of sea level extremes in the Baltic Sea and
North Atlantic coastal regions, the main focus being on the spatial modelling aspects. We first introduce
the review framework, summarise the basic information of the reviewed articles and discuss the basics
of EVA. We then give a more detailed overview of the reviewed approaches to performing EVA on sea
level extremes and conclude with a summary of the main benefits and shortcomings of the different
methodological approaches. We also briefly give suggestions to future research directions on spatial
extreme value modelling within the MAWECLI framework.

2 The review framework

Articles were first collected and filtered based on a certain set of keywords from Google Scholar (https:
//scholar.google.com/), Clarivate Web of Science (https: //www.webofscience.com/wos/woscc/
basic-search) and Semantic Scholar (https://www.semanticscholar.org/). We only considered
papers written in english and that had gone through a peer-review process. Some older potentially
useful articles were unfortunately unavailable to us and thus, were not included here. We constrained
the search to articles in which the analysis was geographically focused either in the Baltic Sea or the
North Atlantic coastal region. However, we also included global-scale studies, if they covered the afore-
mentioned regions. Furthermore, it was required that some form of statistical EVA be explicitly applied
spatially or to spatial data in the paper. To further constrain the review, articles in which the wave height
or tropical cyclones were exclusively analysed were omitted. Waves in particular have some data specific
features that are out of scope of this review. However, this decision admittedly left out some articles,
which would had likely been methodologically useful for our purposes. A final screening based on the
references within the initial set of articles was made in an attempt to include missed articles to the extent
possible.

A total of 37 articles matching the criteria of our review were found from the various literature
sources. These articles were divided into the following five categories: 1) Physics-based approaches,
2) Regional frequency analysis, 3) one-dimensional spatial methods, 4) fully spatial statistical methods
and 5) satellite-based approaches. There was a distinct lack of papers covering the Baltic Sea region in
category 4, which lead to the decision to include a larger geographical region in the review. The reviewed
articles and their main properties are listed in Table 1.

A basic summary of the approaches and methods applied in the reviewed articles is shown in Fig.
1. The most common approach among the reviewed articles (21 articles in total) was the application of
EVA on physics-based simulations of extreme sea levels. The most popular distribution applied in these
studies was the generalised Pareto distribution (nine articles) when inferring occurrence probabilities of



ESL events. In seven articles, either the GEV distribution or Gumbel distribution was used. The reason
why the Gumbel distribution was favoured over the GEV distribution in so many articles, was likely due
to its simple form, which facilitated parameter estimation from simulated data. Furthermore, in four
out of 21 articles the r-largest GEV distribution was used to model the sea level extremes, and one also
considered the exponential distribution.

The observation-based studies were further divided into five additional categories based on the spa-
tial modelling approach taken in them. The regional frequency analysis (RFA) was the most popular ap-
proach and applied in five out of 16 articles. Bayesian hierarchical modelling (BHM) and one-dimensional
regression-based models were both applied in three articles. Furthermore, there were two studies which
used satellite altimeter data for spatial analysis and one in which stochastic modelling of ESLs was ap-
plied. Distributional choices for EVA were also more numerous than in the physical modelling studies. A
total of eight different distributions were used, although not all of them were applied in spatial context.
Overall, GEV (12 out of 15) and GPD (five out of 13) were the most popular choices, with a number of
other distributions applied in one or two studies.

Table 1: A summary of the main features of the reviewed
studies. The abbreviations are described in the main text.

Author Period Region Type Method
1. Rashid et al., 2024 1950-2017 CONUS Statistical GEV, Stochas-
tic
2. BijDe Vaateetal., 2024 1993-2021 Global Statistical GEV, Satellite
3. Muisetal., 2023 1951-2050 Global Physical GPD, Expo-
(GTSM) nential, GEV,
Gumbel
4. Lietal., 2023 1979-2018 Global Physical GPD
(GTSM)
5. Lorenzet al., 2023 1979-2018 Baltic Sea Physical GEV, GPD
(GETM)
6. Calafat et al., 2022 1960-2018 Western Europe  Statistical BHM, GEV
7. Andreevsky et al., 2020 1846-2011 Western Europe  Statistical RFA, GPD
8. Calafat et al., 2020 1960-2013 North Sea Statistical BHM, GEV
9. Muis et al., 2020 1979-2017, Global Physical GPD
1976-2100 (GTSM)
10. Beck et al., 2020 1966-2015 Nort-West Statistical BHM, GEV
Atlantic Coast
11. Muis et al., 2019 1988-2015 uUs North- Physical GPD
Atlantic  coast- (GTSM)
line
12. Vousdoukas et al., 2018 2000-2100 Global Physical GEV, GPD
(DFLOW FM,
FES2014)

Continued on next page




Table 1: A summary of the main features of the reviewed
studies. The abbreviations are described in the main text.

Author Period Region Type Method
Soomere et al., 2018 1961-2005 Baltic Sea Statistical GEV, Gumbel,
2-parameter
Weibull
14. Lobeto et al., 2018 1993-2015 us North- Statistical GEV, Satellite
Atlantic  coast-
line
15. Frau et al., 2018 1846-2017 Western Europe  Statistical RFA, GPD
16. Wahl et al., 2017 1979-2014 Global Physical Gumbel
(GTSR)
17. Muis et al., 2017 1979-2014 Global Physical Gumbel
(GTSR)
18. Muis et al., 2016 1979-2014 Global Physical Gumbel
(GTSR)
19. Vousdoukas et al., 2016 1970-2005, Europe Physical GPD
2010-2040, (Delft3D)
2070-2100
20. Weiss et al., 2013 1915-2011 British Isles Statistical RFA, GEV,
GPD
21. Marcos et al., 2012 1950-1999, Bay of Biscay Physical GEV
1958-2001, (HAMSOM)
2000-2099
22. Grawe et al., 2012 1960-2000, Baltic Sea Physical GEV, r-largest
2000-2100 (GETM) GEV, GPD
23. Marcos et al., 2009 1950-1999 Mediterranean,  Physical r-largest GEV
1958-2001, Iberian coast (HAMSOM)
2000-2099
24. Bardet et al., 2011 1846-2008 North-East Statistical RFA, GPD,
Atlantic coast Exponen-
tial, Mixed
exponential
25. Bernardara et al., 2011 early 19th cen- Western Europe  Statistical RFA, GPD
tury onward
26. Haigh et al., 2010 1900-2006 English Channel  Statistical GEV, r-largest
GEV, JPM,
RJPM, SRJPM
27. Marcos et al., 2009 1958-2001 Mediterranean,  Physical GPD
Iberian coast (HAMSOM)

Continued on next page




Table 1: A summary of the main features of the reviewed
studies. The abbreviations are described in the main text.

Author Period Region Type Method
28. Wang et al., 2008 1961-1990, Irish waters Physical GEV
1990-2002, (ROMS)
2031-2020
29. Butler et al., 2007a 1955-2000 North Sea Physical (CSX)  r-largest GEV
30. Butler et al., 2007b 1955-2000 North Sea Physical (CSX)  r-largest GEV
31. Bernier et al., 2006 1960-1999 North-West Physical Gumbel
Atlantic (POM)
32. Meier, 2006 1961-1990, Baltic Sea Physical (RCO) Gumbel
1903-1998,
2071-2100
33. Lowe et al., 2005 1961-2000, British Isles Physical (CSX) GEV
2071-2100
34. Lowe et al., 2001 2006-2036, British Isles Physical (CSX)  Gumbel
2081-2100
35. Dixon et al., 1998 NA British Isles Statistical 1-d regres-
sion, GEV,
RJPM
36. Dixon et al., 1992 1813-1988 British Isles Statistical 1-d regres-
sion, GEV
37. Coles et al., 1990 1813-1988 British Isles Statistical 1-d regres-
sion, GEV
Type
OB a1
16
& 14+
'g 12
“E 10 A
Zz 6]
al
5
e S &
< . <
N K °§§& 03\"’\0 +0<\Q’&
’b(b&e ‘Q@be
&N

Figure 1: A summary of the methods used in the reviewed articles. The counts are shown separately for
physical and statistical modelling articles. The first five boxes show the spatial approaches taken in the

statistical modelling articles. The abbreviations are described in the main text.
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3 Preliminaries

In this section, we briefly recap the basics of the extreme value theory following Coles (2001). Starting
with the block maxima approach in the univariate case (i.e., no spatial dependence), letY; = {Y1, ..., Y,}
be a sequence of independent and identically distributed (i.i.d.) random variables. We are interested
in the behavior of M,, = max{Y1,...,Y,}, for example the annual maximum sea level in case n is the
number of observations over a year long period. The classical extreme value theory states that assuming
there exist sequences of normalizing constants {a, > 0} and {b,} such that

Pr{(M, — b,)/a.} — G(y)as n — oo, (1)

then the only suitable limiting distribution for G is the GEV distribution

Clyim o &) — exp{—[l—l—&(%)};%}, for§ #£0 (2)
Vi o) = ot el (2]}, foré o °

The three parameters u € R, o0 > 0 and £ € R in Eq. (2) are the location, scale and shape parameter,
respectively. The GEV tail behavior depends on the shape parameter £ such that when § < 0 (Weibull),
y has an upper limit at u — & /o, whereas for £ = 0 (Gumbel) and £ > 0 (Fréchet), the tail is unbounded.
Equation (2) can be inverted to obtain the GEV quantile function

w— g [1—{~log(l—p)}t], for&+#0
pu — olog{l —log(1—p)}, for ¢ =0,

InEq. 3, y, is the p-quantile corresponding to certain exceedance probability p, also known as the return
level. The quantile function can be alternatively expressed using the definition of return period T = 1/p.
For typical hydrological and meteorological observations, a block size of one year is often considered to
be large enough for the GEV distribution assumptions to approximately hold, but other block sizes (e.g.
monthly) have also been used.

To cope with the limited amount of data available for estimating the GEV distribution parameters, the
so-called r-largest GEV was developed as an extension to the traditional GEV distribution. In this case, r
largest values from each data block are retained instead of using only the largest one. The same assump-
tions hold, as in the case of the GEV distribution, and the same distribution parameters are estimated,
using the joint density for the r largest values

_ -1/8) _r _ —(1+1/¢)
h(i, .. yri 0, €) =exp{— {1+5 (y’a “)} }ﬂ% {1+5 (”G “)} (@)

+ k=1

Yp = (3)

The benefit of the r-largest GEV is that more information about the extremes is included, which in princi-
ple facilitates the estimation of GEV distribution parameters. However, this is made with the expense of
possibly deviating from the theoretical assumptions for too large values of r, which might lead to biases
in the parameter estimates. More information about this approach is provided by Coles (2001).

Another commonly used approach is the so-called peaks-over-threshold approach, which is analo-
gous to block-maxima approach. Denoting excesses over some large enough threshold vas X; =Y; — u
with Y; > u, the limiting distribution for the threshold excesses is the generalised Pareto distribution
(GPD)



1—(14+%)7Y¢ forg #£0
1 —exp(—3%), for§ =0,
where 6 = o + §(u — p) is the GPD scale parameter. The shape parameter £ is equivalent to the GEV

shape and defines the tail behaviour accordingly. The GPD quantile function corresponding to N-year
return level is defined as

H(x;6,§) = (5)

. u+g[(NnX)E—1], for&#0
P u+alog(NnyX,), for¢ =0"

where n, is the number of observations per year and ), is the probability of exceeding u. One of the
main challenges in using GPD is how to select the threshold u, and there are several ad-hoc methods
developed for selecting a suitable threshold value (e.g., Scarrott et al., 2012). Often, as low threshold as
possible is chosen such that GPD is still a reasonable approximation to the data, so that the sample size
is not too severely limited (Coles, 2001).

(6)

4 Spatial extreme value modelling approaches

We next discuss the various methods used in the reviewed extreme value modelling studies. The main
weight is on describing the methodological choices rather than on the modelling results, but the most
important ones are presented whenever they support the methodological discussion and help to under-
stand the strengths and weaknesses of the method at hand.

4.1 Physics-based modelling

Physical modelling provides a compelling alternative to statistical spatial modelling approaches when
analysing ESLs (Weisse et al., 2021). The main strength of physical models is that they, by definition,
can simulate physically meaningfully spatio-temporal sea level processes and provide spatially coherent
results; as Butler et al. (2007b) state, "from the statistical perspective the model output can effectively
be regarded as spatially and temporally resolved storm surge elevation data". One important benefit of
using physics-based models is that the contributions of different factors that drive ESLs can be evaluated
in parallel with the statistics of ESLs. Furthermore, the limited availability of observed sea level extremes
can be in principle alleviated by running model simulations over long time periods, although it is com-
putationally costly to perform long-term simulations with complex physics-based models. Studies based
on simulated sea levels typically, but not always, apply EVA independently on each grid box with the
assumption that the model directly resolves spatial dependencies. Physical modelling is also required
to provide covariate information for the extreme value models, when future changes in the sea level
extremes are studied.

While there have been several physic-based modelling studies on extreme sea levels in the study
region, many used the tail quantiles of the empirical distribution, when analysing the tail of behavior of
ESLs. To keep the study focused, we restricted our review solely to those papers that explicitly included
some form of theoretical extreme value analysis. This allowed to make some comparisons between the
physics-based and statistical modelling approaches. Most of the physical modelling studies were made
on a regional scale and provided location-specific information about extreme sea levels. Therefore, we
review their main aspects on a regional basis.
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The first physics-based extreme value analyses on the North Sea region and the British Isles were
made by Lowe et al. (2001) and Lowe et al. (2005). They studied future changes in storm surges around
the British Isles and the adjacent sea areas with the CSX model (e.g., Flather et al., 1998), using the
Gumbel and GEV distribution for EVA. Model simulations in these early studies had a rather coarse res-
olution (35 km), which resulted with an underestimation of return level estimated with respect to the
observations. Another climate study was conducted in the same region by Wang et al. (2008), who pro-
jected spatial changes of storm surge return levels on the Irish waters in the mid-21st century conditions
by applying the standard GEV distribution to the regional oceanic model system (ROMS) simulations
(Shchepetkin et al., 2005). The main benefit with respect to the earlier studies was the increased spatial
resolution (~ 7 km) and added insights into the surge generating mechanisms. Note that in all these
studies the five largest independent surges from each year were used at least in some parts of the study
to fit the model instead of yearly block maxima, but it is not immediately apparent, whether the r-largest
approach was used or not. All these studies underlined the importance of reliable forcing data.

The study by Butler et al. (2007b) was the first one, where a statistical spatial extreme value model
was applied to simulated storm surges. They used a coarse (~35 km) resolution, 46 years long storm
surge reconstruction generated with the CSX model over the North Sea region and fitted three variants
of the r-largest GEV distribution to the data: one with grid-box specific parameters, one with a non-
stationary model for the location and scale parameter and one in which these two parameters were
allowed to vary both in space and time. They used the 20 largest independent annual values in their
analysis, which is a rather large number compared to the other reviewed studies. The spatial and tem-
poral dependence were modelled using a non-parameteric kernel approach that enforces local spatial
and temporal smoothness in the two GEV parameters. Model uncertainty was assessed by bootstrapping
(resampling with replacement) temporal samples from data, while keeping the spatial structure fixed.
Butler et al. (2007b) showed that this model allowed to generate smooth spatial estimates of temporal
trends in the location and scale parameter. However, a major shortcoming of this approach is that there
is not an easy way to select an optimal kernel bandwidth for handling the spatial and temporal smooth-
ness, when estimating the model parameters. Again, physical model deficiencies such as the coarse
resolution were acknowledged to affect the results in certain areas. A similar study was performed by
Butler et al. (2007a) who used the CSX model and the r-largest GEV in a similar manner to Butler et al.
(2007b), with the main weight being on the decadal-scale storm surge variations.

In the Baltic Sea region, which is the region of most interest in the review, the first EVA study using
physical modelling was made by Meier (2006). He used the Gumbel distribution, including uncertainty
estimates based on bootstrapping, to infer the spatial pattern of 100-year return levels from an 11 km
resolution hindcast and time-slice simulations run with the RCO model (e.g. Meier et al., 1999). The
return level values were reasonably close to the observed values apart from the western Baltic Sea,
Finnish archipelago and the end of the Gulf of Finland, where they were underestimated. The results
showed that when changes in mean sea level were included, increases in the exceedance probability
of extreme sea levels above 160 cm were seen over large areas on the westward-facing coastal regions
of the Baltic Sea during the 21st century. Later, Grawe et al. (2012) performed a more detailed, high-
resolution (1 km spatial resolution) transient simulation with the General Estuarine Transport Model
(GETM) (Burchard et al., 2002) over the western Baltic Sea. They compared three distributions, when
modelling the storm surge height: GEV, r-largest GEV and GPD. By comparing return level estimates
obtained from distribution fits to observations and model simulations at several tide gauge locations,
they concluded that the r-largest GEV distribution with r = 5 provided a sufficient fit to the simulated
data and also had the smallest uncertainty range. Relative biases in 10 to 50-year return level estimates
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were about +-5%, which indicated that the high resolution model gave accurate results. Locally, the
errors were still of the order of 10-20%, likely due to misrepresentation of local topography, although
the limitations of atmospheric forcing could also explain part of the error. Over large areas, the GEV
shape parameter was negative, which is in line with some observation-based statistical studies (e.g.,
Raty et al., 2023).

Soomere et al. (2018) studied various extreme value distributions on the southern coast of the Gulf
of Finland and the Gulf of Riga, using RCO and RCA4 NEMO (Wang et al., 2015) simulations from 1961
to 2005. Both models were run at a 2 nautical mile (3.7 km) resolution, but with different temporal
resolutions. These simulations were used to evaluate spatial variations in the GEV, Gumbel and the 2-
parameter Weibull distribution parameters. Both the location (of the GEV and Gumbel distribution) and
scale parameter increased towards the end of the Gulf of Finland, whereas the shape parameter (of the
GEV and Weibull distribution) stayed relatively constant throughout the studied coastal region. Soomere
et al. (2018) also compared results from various parameter estimation procedures, when estimating the
distribution parameters. The results showed that the parameter values depended to certain extent on
the chosen estimation procedure, but the used physical model also affected the parameter estimates.

As an extension to the work by Grawe et al. (2012), Lorenz et al. (2023) analyzed the capability of
GETM to simulate ESLs in the whole Baltic Sea. The model was run for 40 years with various forcing
data sets to evaluate uncertainties related to the atmospheric forcing. Both the GEV distribution and
GPD were fitted to the model simulations and the 30-year return level was calculated from the fitted
distributions. The results showed that the return level estimates were relatively independent of the EVA
method used, with a well-known spatial pattern of higher return levels on the eastern side of the Baltic
sea and on the west facing coastal regions elsewhere. However, there were large spread in the return
level estimates between the forcing data sets, underlining the fact that uncertainties in the return level
estimates are strongly linked with the representation of atmospheric forcing.

Over the southern Europe, Marcos et al. (2009) and Marcos et al. (2011) Performed storm surge
simulation studies around the Iberian coastal region and the Mediterranean basin with the HAmburg
Shelf Circulation Model (HAMSOM) model run on 1/6° x 1/4° resolution (Ratsimandresy et al., 2008).
Marcos et al. (2009) evaluated the model’s capability to reproduce observed sea level extremes in the
present-day conditions, using GPD fitted to five largest values per year. As in the previous studies, the
model-estimated return levels were slightly underestimated in many locations compared to observa-
tions. Marcos et al. (2011) calculated spatial projections of storm surge return levels under the 21st
century climatic conditions, using seven non-stationary (location and scale parameter) variants of the
r-largest GEV distribution with r = 5, or using only the annual maxima in regions, where the r-largest
GEYV fit was poor. They also performed EVA similarly for the negative storm surges. There were marked
spatial variations in the parameters of the best performing model (the location parameter modelled as
a linear function of time and the North Atlantic Oscillation index (NAO)), which were apparent also in
the spatial return level estimates. Marcos et al. (2012) performed an interesting case study, in which the
same modelling setup with Marcos et al. (2011) was used, but with a quantile mapping post-processing
step to correct for model underestimation, when projecting changes in various return levels under two
future emission scenarios around the end of the Bay Of Biskay. In addition to a standard EVA, they used
the simulated changes in the 50-year return level to estimate the spatial extent of coastal flooding in the
city of Bilbao.

The first European scale analysis of storm surges was performed by Vousdoukas et al. (2016), who fit-
ted the GPD to the Delft3D storm surge model simulations (Deltares, 2014) run with several atmospheric
and climate model forcings. Model validation against tide gauge observations along the European coast
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indicated a relatively good overall performance, with some location-specific over- or underestimation of
low and high extremes. By applying EVA to an ensemble of storm surge projections, they were able to
derive changes in the simulated return levels up to 500 years, which showed substantial increases in the
North Sea and Baltic Sea region.

On the western North-Atlantic coast, the first physics modelling-based extreme value analysis of
storm surge was conducted by Bernier et al. (2006). They calculated the 40-year spatial return levels
by fitting the Gumbel distribution to a 40-year long hindcast made with the Princenton Ocean Model
(POM) simulation (Mellor, 1998) that was run with an approximately 9 km resolution. Validation against
a set of tide gauge fits showed that the modelled 40-year return level estimates were reasonable with a
slight underestimation in some locations. They attributed the underestimation to the limited resolution
of forcing (wind and pressure) fields, which was insufficient to resolve stronger tropical systems in the
southern parts of the model domain. Also the model resolution and model limitations in simulating local
processes affected the results. Muis et al. (2019) studied the spatio-temporal patterns of ESLs and their
driving factors over the western parts of the North Atlantic region. They used a 28-year long sea level
reanalysis (a combination of past observations with model simulations) generated with the Global Tide
Surge Model (GTSM) (Muis et al., 2016) and fitted the GPD to storm surges above the 99th percentile
threshold. Due to the short time period used, they focused on return levels only up 10 years. Analysis
of the driving mechanisms and their contributions to ESLs showed that extra-tropical cyclones had the
largest contribution in the northern parts of the study domain, with tropical cyclones having a more
local, but still significant contribution particularly to the most extreme sea levels in the southern parts
of the domain.

On a global scale, the first physics-based reanalysis of extreme sea levels (GTSM) was provided by
Muis et al. (2016). They fitted the Gumbel distribution to the simulated storm surge from 1979 to 2014
and concluded that, in regions where extra-tropical cyclones are the main driving factor of storm surge,
the modelled return level estimates were reasonable, although there was a general tendency to under-
estimate them in comparison to the observations. The same modelling framework was later adapted in
other studies (Muis et al., 2017; Wahl et al., 2017), which confirmed the underestimation of return levels
with respect to the observations. Muis et al. (2020) produced a newer global ocean reanalysis in which
the biases in the 10-year return levels, inferred using the Gumbel distribution, were slightly smaller com-
pared to Muis et al. (2016). Yet in another study, Muis et al. (2023) performed a global extreme value
analysis of storm surges using the GTSM model forced by five climate models from the latest Coupled
Model Intercomparison Project (CMIP6) with the GPD fitted above the 99th percentile threshold (other
distributions were initially evaluated). Climate model simulations had positive biases in the estimated
return levels in comparison to a baseline simulation at high latitudes and particularly in semi-enclosed
basins. This bias was attributed to the too intensive storms simulated by the climate models in these
regions.

Vousdoukas et al. (2018) provided global probabilistic projections of ESLs, including contributions
from mean sea level, tides, and the combined effect of storm surges and wind-waves in their analysis.
For storm surges, a similar modelling setup as in Muis et al. (2016) was used. Their EVA was based on a
modification to the GEV distribution and GPD under non-stationary conditions by Mentaschi et al. (2016).
They applied the following time-varying normalisation to the observations

_y(t) = T(¢)

X(t) = T, (7)

where T(t) and S(t) are the trend and slowly varying standard deviation of the original time series
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y(t). However, it was not apparent, whether Vousdoukas et al. (2018) applied either the block-maxima
or peaks-over-threshold approach in their study.

A sophisticated approach to generate global, spatially dependent synthetic extreme sea levels was
demonstrated by Li et al. (2023). They used 40 years of global sea level reanalysis data produced with
GTSM to generate a set of synthetic sea level extremes and spatially dependent return levels along the
global ocean coasts. Their main aim was to generate a large enough number of events that allowed a
robust estimation of rare sea level events and their uncertainty. Analysis locations were clustered up to
30 small clusters within ten disjoint coastal regions based on POT time series, using the 95th percentile
as a threshold. Li et al. (2023) then fitted a multivariate conditional exceedance model of Heffernan et
al. (2004) to the reanalysis to model the joint distribution of 3-day water level maxima. The modelling
approach consisted of first defining the marginal distributions on each analysis location and then calcu-
lating pair-wise dependence between the locations within each cluster. More formally, let F;(X;) with
i =1,...,dbethe marginal distribution of 3-day maximum water levels X; on analysis location i among
d locations within a target cluster. Each marginal distribution was estimated as a mixture distribution by
fitting the GPD above a location-specific percentile threshold u; and an empirical distribution below u;.
Then, the individual distributions F;(X;) were transformed to a common scale using the Laplace distri-
bution (Keef et al., 2013b). This procedure transforms both the upper and lower tail of the distribution
to exponential. Next, pair-wise dependencies were estimated using

Y [Yi=aYi+YPZ vy >, (8)

where Y _; is a vector of all marginal distributions apart from Y; (the target location) and v is a threshold
above which the pair-wise dependence is calculated. The parameter vectors —1 < a < landb < 1
describe the strength and variation of the dependence, respectively. Vector Z_; contains d — 1 residuals
independent of Y;. A quantile-based estimation procedure for Z_; is used as described by Keef et al.
(2013a). The calculation of pair-wise dependence was repeated for each pair of locations within each
cluster.

In the final step, synthetic, spatially dependent sea level events were generated stochastically using
the multivariate conditional exceedance model. For doing this, Li et al. (2023) estimated the distribution
of annual event counts within each cluster from the 99th percentile exceedances of the 3-day maximum
sea level time series separately at each analysis location with a kernel-based approach. By sampling from
the kernel distribution, time series of event counts corresponding to 10000 years of extreme sea level
events were obtained. The sampled events were distributed within each cluster such that the propor-
tion of extreme sea level events at each location matched the empirical estimates calculated from the
scaled distribution Y. The conditional model was sampled with the correct proportions and the obtained
synthetic ESLs were finally used to calculate return levels empirically from the sample. Li et al. (2023)
argued that the empirical estimation approach does not suffer from the same limitations as the theo-
retical models (e.g. difficulties in estimating the shape parameter) and that the sample size is sufficient
to estimate 1000-year return levels. It should be noted, however, that their model inherently assumes
that the tail of the source data distribution follows the GPD. Simulation experiments showed that their
model provided good performance in comparison to the reanalysis data set, with slight underestima-
tion of return level values for long return periods. Furthermore, a comparison against historical events
showed that the model is able to simulate realistic spatial dependence.

To conclude, physics-based modelling allows to gain physically consistent spatial information about
ESLs and gives insights in the physical factors governing them. Furthermore, future changes in the storm
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surge extremes can be analysed. However, in many cases the limited temporal span of simulations re-
stricted the analysis of return levels such that relatively commonly occurring sea levels (e.g. 10-year
return level) were targeted. Furthermore, studies often incorporated relatively simple extreme value
analysis methods such as the GEV distribution and GPD. The most comprehensive EVA models reviewed
were the ones applied by Butler et al. (2007b), who used a non-parametric model to capture spatio-
temporal variations in the location and scale parameter of the GEV distribution and Li et al. (2023), who
implemented a stochastic sampling scheme, which was capable to generate very long, realistic, synthetic
time series of ESL events.

4.2 Regional frequency analysis (RFA)

A form of spatial analysis in which all observations are pooled together over a region is called regional
frequency analysis (RFA), as described in its original form by Dalrymple (1960). For a formal description,
let us have N tide gauges with n; observations available at each gauge i so that the overall observations
areY;, forj = 1,..., n;. Also, let us define the local quantile function corresponding to a cumulative
probability F as Y(F), 0 < F < 1. The regional frequency distribution Y (F) is defined as Y (F) =
Y;j(F)/ui, where pu; is a site-specific index-flood that describes the site specific traits of the observed
frequency distribution. Not that u; should not be confused with the location parameter of the GEV
distribution. Alternatively u; is also know as the surge index (Bernardara et al., 2011) or the local index.
We will use latter term hereafter (Weiss et al., 2013).

The main assumption in RFA is that the frequency distributions belonging to a certain group of sites
are similar apart from the scaling factors u;. There are several ways to define u;. The distribution mean
or some other central statistic is often used, although distribution quantiles or some high sea level value
(Bardet et al., 2011) have also been tested for this purpose. Other physical quantities can also be consid-
ered when calculating the local index, which in principle allows to make some estimations at un-gauged
site.

In practice, the calculation of regional frequency curves in RFA proceeds according to Hosking et al.
(1997) as follows:

1. Data is first screened for homogeneity and inconsistencies are eliminated

2. Observations within the region of interest are categorised into approximately homogeneous groups
according to their distributional similarity.

3. The observations are then standardised using the local index.

4. A suitable probability distribution is chosen based on goodness-of-fit tests and then fitted to ob-
servations either at each site or to the whole regional data after which the results are pooled
together to get the regional frequency distribution.

A useful concept related to RFA is the effective duration D.¢¢, which describes the equivalent record
length obtained by pooling data together from multiple sites. The value of D.¢¢ strongly depends on
inter-site dependence, i.e., the number of independent observations and is somewhere between the
length of the longest tide gauge record (perfect inter-site dependence) and the total length of the pooled
time series (no inter-site dependence). Weiss et al. (2014b) provide a formulation over N tide gauges as
Derr = Z,N:1 d;/N, where d; is the length of time series at tide gauge i and ¥ = X\, /X, ¢ € [1, N]isa
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measure of inter-site dependence given as the ratio of average annual number of storms within a region
A, to the average annual storminess at individual sites A. Thus, D.¢¢ directly summarises the benefit of
pooling the observations with RFA.

A critical part of RFA is the assessment whether the observations from a certain region are homo-
geneous enough. Various ways for this have been suggested in the literature. Bernardara et al. (2011)
tested regional homogeneity using a regional heterogeneity measure H and a local discordancy mea-
sure D;. Both measures are based on the so-called L-moments, which provide an alternative system to
describing the distribution moments. The basic idea of the heterogeneity measure H is to compare the
dispersion of certain sample L-moment ratios of individual tide gauges with the sampling variability of
a homogeneous group of tide gauges. A homogeneous region is simulated from a Kappa distribution,
whose parameters are estimated using the regionally weighted L-moment ratios. The fitted distribution
is then used to generate a large sample of synthetic observations from which the sampling variability
is estimated. Hosking et al. (1997) provides guidelines how large a dispersion is allowed in the local L-
moment ratios for a region to be considered homogeneous. On the other hand, Discordancy measure
D; measures whether any single tide gauge is too much in discordance with the other tide gauges within
a region, using again the L-moments. As such, it can also be used for screening gross outliers before a
homogeneous region is defined from the study sites. More information about both measures can be
found from Hosking et al. (1997).

One additional difficulty in using RFA with storm surges is the possible temporal dependence be-
tween the gauges, which reduces the effective sample size of the pooled data. This aspect is often taken
into account rather crudely due to the difficulty to distinguish between physically independent events
(i.e., are there one or more storms causing high sea levels within a region over a short time window)
and finding methods to cope with the inter-site dependencies. The simplest approach is to leave out
other observations other than the highest one within a certain time window (Bernardara et al., 2011;
Bardet et al., 2011), but doing this useful data will likely be lost. Weiss et al. (2014b) provide a theoretical
framework for accounting for inter-site dependencies in the POT framework for extreme wave heights.

Some studies have also tried to automatize the definition of homogeneous regions. The framework
proposed by Weiss et al. (2014a) includes a clustering method based on the concept of a storm footprint,
which can be used to assess the strength of inter-site dependencies. Another approach was recently
suggested by Andreevsky et al. (2020) for defining statistically and also physically homogeneous regions
by using the extremal coefficient between two sites as p(X,Y) = lim,_,o P[X > q1|Y > g»], where ¢;
and g, are some extreme surge quantiles of site specific random variables X and Y. The extremal index
stems from multivariate extreme value theory as a measure for the dependence between the extremes.

As there are various definitions for the local index, there is a certain level of subjectivity in selecting
the local index. Some guidelines are given by Hosking et al. (1997). Weiss et al. (2013) performed a com-
parison of four different methods for calculating the local index. They showed that the distribution mean
tends to provide reasonably robust results for local scaling, whereas in case of asymmetric distributions,
other indices could also be considered.

We now summarise the main findings from the reviewed articles. The earliest found study which
performed RFA on storm surges was made by Bernardara et al. (2011) along the French Atlantic coast on
18 tide gauges, using the GPD. They concluded that although GPD did not provide a completely satisfac-
tory fit to the regional data, the fit was much better compared to the site-specific fits due its capability
to provide higher return levels. Also the uncertainty in the return level estimates was reduced.

Bardet et al. (2011) performed RFA also using long-term tide gauge time series from the French At-
lantic coast. They compared a mixed exponential distribution with an exponential distribution and the
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GPD in providing regional return level estimates, and concluded that the mixed exponential distribution
provided the best fit to the data. In line with the study of Bernardara et al. (2011), their results showed
that the regional 1000-year return level estimates were consistently larger at tide gauge locations than
those obtained with the site-specific fits.

Weiss et al. (2013) provided guidelines for selecting a suitable local index under various levels of
inter-site dependence, regional heterogeneity and distributional asymmetry. Out of the four tested local
indices, they suggested of using the distribution mean as the local index, when the region is sufficiently
homogeneous and the local distributions are symmetric. In the presence of asymmetry or for slightly
heterogeneous observations, other indices such as the location parameter of the fitted (GEV or GPD)
distribution could also be considered. They also demonstrated the differences on return level estimates
between the tested local indices in a case study, which included 16 tide gauges from the British coastal
region. The results showed that choosing a sub-optimal local index has a deteriorating effect on the
estimated return levels. Overall, there is no a unique way to define the local index and improper selection
can have an adverse effect on the return level calculations (Weiss et al., 2013).

Frau et al. (2018) attempted to include historical storm surges outside the continuous observations to
the RFA, using the GPD as the distributional model. Their approach was based on the assumption that the
average occurrence frequency of storms A, which corresponds to a certain high quantile threshold, has
stayed constant over time. They then defined the concept of credible duration D.,, which is in essence
D.¢r that takes into account the historical duration due to the historical observations. For example, a
single historical observation included with the threshold A = 0.1 would correspond to an increase of
ten years in D.,. It should be noted that the notion of D, is only useful for the peaks-over-threshold
approach. By assuming a constant A over the whole observational period, they were able to include
historical records in their RFA approach. Using a large number of tide gauges from the French and British
coastal region, they demonstrated that the inclusion of non-continuous historical observations lead to
an increase in the credible duration and higher return level estimates in comparison to the case, where
the historical observations were not used.

Lastly, Andreevsky et al. (2020) described a method for defining homogeneous regions in a more
physically meaningful matter, using the concept of empirical spatial extremogram (ESE). They used ESEs
to construct homogeneous regions for three target sites in France and showed that the defined regions
were more homogeneous than those provided by Weiss et al. (2014a), although the 1000-year return
level values were relatively similar in both studies.

While the aforementioned studies have illustrated that pooling observations with RFA increases the
robustness of the estimated occurrence probabilities of extreme sea levels, when the gauge sites are
reasonably homogeneous, it has some shortcomings. Most importantly, RFA does not account for de-
pendencies between separate regions and does not easily allow using covariate information in the ex-
treme value modelling step, although this has been suggested in the literature (Hosking et al., 1997).
Also, choices regarding the various steps and parameters in RFA pose some challenges for the practical
use of this method in real-world cases.

4.3 One-dimensional spatial modelling

A natural extension to the univariate, point-wise modelling is to handle the coastal region of interest in
a one-dimensional manner, for example using the distance and other covariates along the coast of the
target region as predictors. Compared to full-fledged spatial modelling, the one-dimensional modelling
approach is substantially simpler, as there is no need to design and model complex two-dimensional
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fields of extremes and their dependence structures. Various one-dimensional approaches have been
suggested in the literature. Here, we discuss their main points in a chronological order.

One of the first efforts to model sea level extremes with a one-dimensional spatial model was made
by Coles et al. (1990), who modelled the GEV distribution parameters using a parametric model, with
the distance along the coast of Britain as a covariate. They also tried to capture the underlying surge
and tide-surge interactions in their model formulations. A multivariate extreme value distribution was
constructed assuming that i) sites are conditionally independent such that for the neighbouring sites /,
J and k, the annual maxima Y; and Y, are independent given Y; and ii) the dependence between the
neighbouring sites can be modelled using a logistic dependence structure. These assumptions lead to
the following bi-variate probability density between two tide gauges (Coles et al., 1990)

—1~(r—k1) ~(r—k ~r ~r\— r ~r ~r r ~r ~r r
Fly1 y2) = (0102) 3 VA G + 7)) 2V + 7)Y+ r =1} exp (=5 + 95)Y) (9)
with y; = [1 — ki(y; — i) /oi]/%, for i = 1, 2. Note that Coles et al. (1990) used the definition k = —¢.
The strength of the dependence is governed by r > 1, such that when r = 1 the two sites are completely
independent and when r — oo they are completely dependent. The GEV parameters were modelled at
N sites as a function year j and distance d; with respect to a reference position as

u;:a,-—i—jﬁ,-—l—a,-lnf(a,-) (10)
o; = exp(Bo + Bid; + B2d? + B3d) (11)
ki = vo +71d; + 72df (12)
fori = 1,...,N. In Eq. 10, a; and B; are the regression coefficients to be estimated and o; In f(a,-)

describes both the tidal effect and the relationship with o;. The details of I(c;) can be found from Coles
et al. (1990). This shows that the location parameter does not directly depend on the distance along the
coast. The scale (Eg. 11) and shape (Eq. 12) parameters have a second and first order polynomial depen-
dence on d;, respectively. Furthermore, the covariate d is the distance from an estuary mouth, used
if the tide gauge is located within an estuary. Model diagnostics inspected over eight coastal stretches
showed that in reality, a simplified version of the model usually provided a better fit to the data than
the complete model. In some locations, the distance from the estuarine mouth was found to explain
variations in the scale and shape parameter values.

Assuming that the marginal distribution G; at tide gauge i is a GEV distribution such that Y; ~
GEV(u;, 0/,&) fori = 1,..., N, Coles et al. (1990) tested the following spatial multivariate extreme
value distribution

N B(w)
Pr{Y;<yi:i=1,...,N} = ﬂG,-(y,-)] , (13)
i=1
where B(w) is a dependence function and w = {ws, ..., wy} a vector of weights, whose components

aredefinedas w; = InG;(y;)/ In[]_[jN:1 Gj(y;)]sfori=1,..., N. Alogistic model described in more detail
in Coles et al. (1990) was used for B(w) with dependence the on semi-diurnal tidal phase and distance
between the tide gauges. The main motivation for using this model was to test how strongly spatial
dependence of ESLs is related to the propagation of storm surge along the coastline while simultaneously
accounting for the tidal phase. Coles et al. (1990) concluded that at short distances surge progression
and topography might be the dominant factors explaining the inter-site dependence.

Dixon et al. (1992) extended the model of Coles et al. (1990) to account for spatial dependence in
the temporal trend of the location parameter of the GEV distribution. They used a local-linear weighted
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least-squares estimator to estimate the trend parameter g; from Eq. 10 on site i as B; = i o + vi1d; +
¢j, forall j € Np(i), where the neighbourhood of site i is defined as N,,(i) = j:i—m<j<i+m
and ¢; are zero-mean random variables with variance v7. The distance d; was defined circularly over the
whole coastal region. The local trend estimates were then smoothed using a Gaussian kernel function.

Later, a similar strategy was adopted by Dixon et al. (1998), who used a kernel regression approach to
derive spatial estimates of distribution parameters between the tide gauge locations in the British coastal
region. Their method was built upon the so-called joint probability method (JPM) (Pugh et al., 1980) and
its revised version (RIPM) (e.g., Tawn et al., 1989), denoted as the spatial RIPM (SRJPM) hereafter. The
model for the probability of sea level Z; at time t to exceed some high value z was

T 4
H(z) = Pr <1Tta<XTZt < z) ~ {” Fxiy(z — Xt)} , (14)

t=1

where 0 < 07 < listhe extremal index that measures the degree of clustering of the extremes and Fxy
is the conditional distribution function of the hourly surge Y with respect to the tidal level X. This model
aimed at accounting for tide-surge interactions, which might be important in shallow water regions. The
model can also be applied in case tide and surge are independent.

Starting from the tide-independent case, Dixon et al. (1998) assumed that the surge time series fol-
lowed the GEV distribution GEV(uy, oy, &y ), but used a non-homogeneous Poisson process to estimate
the parameters, as this allowed to use all hourly (declustered) surge values in the parameter estimation.
For the tide-surge interaction case, Dixon et al. (1998) first normalised the hourly surge time series using
S: = (Y: — a(X:))/b(X¢). This stabilises the surge time series (reduced non-stationarity) and allows to
use the same parameter estimation procedures as in the tide-independent case by replacing the original
GEV parameters with

py(Xe) = psb(X:) + a(Xe), oy (X:) = osb(X;) and &y (X;) = &s, (15)

where s, os and &5 denote the parameter estimates obtained from the normalised surge time se-
ries and a(X;) and b(X;) are parameters specified from data. Both the tidal component and the surge
conditional on tides were estimated spatially in order to calculate return level estimates for the joint
distribution. The parameters related to the surge distribution at any coastal distance d were calculated
from the tide gauge specific parameter estimates using a univariate weighted kernel regression approach
(Dixon et al., 1998). The results showed that the spatial model extension provided less biased estimates
compared to a naive alternative in which the return levels were directly interpolated between the data
sites. The spatial model by Dixon et al. (1998) was further compared by Haigh et al. (2010) against four
indirect methods (GEV, r-largest GEV, JPM and RJPM) on the British coast. Their main conclusion was
that SRIPM overestimated return levels in locations, where there were only short sea level time series
available, but this mismatch could have been caused by the differing length of data used to estimate the
SRJPM parameters.

More recently, Raty et al. (2023) used a flexible, non-parametric models to capture the distance
dependence of the GEV parameters along the Finnish coast. They used a hierachical Bayesian modelling
approach with both penalised splines and Gaussian processes in a regression setting, when estimating
the location and shape parameters of the GEV distribution along the coast. Their results showed that the
return level estimates were less uncertain when including distance dependence in their model compared
to single-site fits.
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To summarise, while the one-dimensional extreme value modelling approaches provide an improve-
ment over univariate approaches that assume independence between the tide gauges, their use was
earlier motivated at least partly by the fact that the computational tools and modelling capabilities were
not matured enough to enable full spatial modelling. Moreover, many of these methods estimate some
of the model parameters using ad hoc methods without clear guidelines on how to choose the values
for these parameters.

4.4 Full spatio-temporal modelling

Models that fully capture the spatio-temporal nature of ESLs have recently been started to apply to both
observed and modelled sea level extremes. Most of the reviewed methods were based on a Bayesian
hierarchical modelling (BHM) approach with different techniques to describe the spatial process. One
study stochastically generated synthetic sea level extremes from a spatial process for further analysis.
The small number of found articles highlights the fact that this type of models have rarely been applied
to sea level extremes in the study region.

The earliest found study was conducted by Beck et al. (2020), who used a copula-based approach
to spatially model storm surges on the Atlantic coast of Canada, using incomplete observations from 21
buoys over the years 1966-2015. If Y = {Y;, ..., Yn} with N = 21 is arandom vector of observed annual
maximum sea level and assuming that the observations followed the GEV distributions, the posterior
distribution of all model parameters A = (©, n, §) was described by Beck et al. (2020) using the Bayes’
rule as

P(A[Y) < p(Y[©,&)p(On. &)p(n. §). (16)

In Eq. 16, © = (0y,...,0n) With 6, = (u;,0;) fori = 1,..., N contains the GEV location and scale
parameters of marginal distributions at locations s; and 7 is a vector of model hyper-parameters. Thus,
the hierarchical model is described by the three terms on the right-hand side of Eq. 16, which denote
the data layer, process layer and the prior layer, respectively.

In Beck et al. (2020), the joint distribution H of observations Y, given parameters © and £ (data layer),

was modelled following Sklar’s theorem. Given a copula C and marginal distributions G;fori =1, ...,21
that were assumed to be GEV distributions, the joint distribution was expressed as
H(}/L---,}’zl) = C[Gl(}/1).---,G21()/21)] (17)

There are various parametric forms available for the copula C. Beck et al. (2020) used Student’s t
copula as their model for C, with its correlation matrix being estimated using the exponential correlo-
gram. The authors noted that it is often difficult to work with copulas in high dimensional setting, as
is the case in their article. Student’s t copula was chosen, as it allows to estimate the joint distribution
even if there are data missing from some of the buoys and as it is capable to capture tail dependence
even though it is not an extreme value copula.

In the process layer, the location and scale parameter of individual GEV distributions were modelled
using latent Gaussian processes as

11 NNzl(Xuﬁu,Tﬁzu) and (18)
¢ NN21(X¢ﬁ¢,T£Z¢). (19)
In this equation, . = (@1, ..., t21) and ® = (In(oy), ..., In(021)) and the design matrices X, and Xeo

contain p covariates (and the intercept) for the site-specific GEV location and shape parameters, with
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vectors B, and B¢ containing the associated coefficients. Furthermore, >, and >4 are the correlation
matrices with variance parameters 7 and 75 that are assumed to be constant over the whole domain.
Sea-level pressure was included as the only physical covariate in the model. In the parameter layer, prior
distributions were specified for ten hyper-parameters. To simplify the model, Beck et al. (2020) assumed
that the priors were mutually independent and non-informative (i.e. wide) with suitable limits added
to them to avoid non-identifiability issues, which are common in Gaussian process models. A custom
Markov Chain Monte Carlo algorithm was used to sample from the posterior parameter distribution.

Comparison of return level estimates obtained with single-site GEV fits and the BHM showed that
the values were systematically higher for the BHM, although this could be attributed to the choice of
using the median as the summary statistic, which deviates from the mean for non-symmetric distribu-
tions. However, uncertainty ranges were markedly larger for the single-site fits and covered unrealistic,
negative values in some locations, whereas the BHM was able to provide more meaningful uncertainty
ranges. The latent process description of the GEV parameters readily allowed to interpolate the parame-
ters to ungauged locations, and the surge process could be simulated using the copula model to generate
synthetic storm surge realisations. This is a major advantage over the one-dimensional models discussed
in the previous section.

An alternative approach was described by Calafat et al. (2020), who applied a hierarchical max-stable
model to generate a probabilistic reanalysis of ESLs in the North Sea region. A max-stable process is an
infinite-dimensional generalisation of the univariate GEV distribution. Following Davison et al. (2015) and
Schlather (2002), let {Y;(s)} for i = 1,2,..., nbei.i.d. replicates of a spatial random fields on s € R¢.
A spatial random process Z(s) is a max-stable process, if there exist continuous functions a,(s) > 0 and
b,(s) such that

Z(s) = lim M1 YilS) = bals)

n—+-o00 a,,(s) (20)

By this definition, the univariate marginal distributions of Z(s) are also GEV distributions (Eq. 1). Many of
the parametric forms for the max-stable process have been derived from the spectral representation of
Haan (1984), which facilitates the use of max-stable processes in real-world problems. Some of the well-
known parametric forms are described by Davison et al. (2015) and Dey et al. (2016). An important part
of these models is the formulation of the spatial covariance structure, which also defines the spatial
extremal dependence. For a finite set of n points from Z(s), spatial dependence is described by the
extremal coefficient 6 according to

PriZ(s1) <z, ...,Z(s,) < z] = exp(—0,/z). (21)

In Eg. 21, the extremal coefficient 1 < 6,, < n such that the lower (upper) bound corresponds to perfect
dependence (independence). Often, the bi-variate (n = 2) extremal coefficient is considered, as it is
more practical to work with compared to higher dimensional cases. In practice, @ is typically estimated
from the empirical counterpart obtained from data, for example using the F-madogram (Cooley et al.,
2006).

The implementation of the max-stable process by Calafat et al. (2020) is based on the work by Reich
et al. (2012), who provided a Bayesian description of the so-called residual max-stable process. The
model is a finite approximation to the Gaussian extreme value process by Smith (1990) but with an added
nugget term to account for the overly smooth spatial fields by the latter model and also to improve the
computational stability. Noting the time-dependent annual maximum surge as Y;(s) and assuming that
it is max-stable, the marginal distributions of observations were described as GEV(u.(s), o+(s), ). To
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simplify calculations, Calafat et al. (2020) assumed that the shape parameter stayed spatially constant.
For the observations layer, the model likelihood stands as

ind N

Yi(si)[0:(si), pe(si), o(si), § o '~ GEV(ui(si), of(si), &), (22)
pi(s) = pe(s) + ?(Gt(S)g — 1), (23)
o*(s) ~ ao(s)B:(s)*. (24)

Thus, it is assumed that the annual maxima at site s; is independent conditional on the model param-
eters. Calafat et al. (2020) defined climatological dependence as spatial dependence in the GEV dis-
tribution parameters, which is captured by p.(s) and o(s). Residual dependence, which describes how
individual sites are affected by the same storm, was modelled with the spatial residual process 8;(s). The
strength of the residual dependence is governed by a € (0, 1) such that when a — 0 there is strong
residual dependence and when ¢ — 1 residual dependence vanishes.

The spatial residual process evaluated over L spatial knots is defined as

L o
0:(s) = (Z At,/Wl(s)l/a> ' (25)
I=1

where w;(s) > 0 are scaled Gaussian kernel functions with temporally and spatially varying coefficient
A;; that follow a positive-stable distribution described in more detail by Stephenson (2003) and Reich et
al. (2012). Using the positive-stable distribution ensures that the model is max-stable. To allow smooth
variations in the location parameter, Calafat et al. (2020) used spatiotemporal integrated random-walk
with Gaussian processes (Rasmussen et al., 2005). Attime t = 0, u;—o(s) ~ GP(x”(s)B,,, c(S. 8" Vuo: Puo)):
where the design matrix x" (s) contains the intercept and the width of the continental shelf at location
s with regression coefficients §,,. Note that this covariate is unlikely informative in shallow basins such
as the Baltic Sea basin, and some other covariate more descriptive about the bathymetry could be more
suitable. The covariance function ¢ was modelled using the Matérn covariance function (Rasmussen
et al., 2005), with the spread -y, and length scale p,,, estimated from the data. The trend term and the
random-walk jump were modelled as zero-mean Gaussian processes with their own covariance struc-
tures. Similarly, the logarithm of the scale parameter log o(s) was spatially modelled using Gaussian
processes, but without temporal dependence. The rest of the details of the model can be found from
Calafat et al. (2020).

The model was extensively validated with synthetic data generated from the model with known pa-
rameters, real-world observations and also using a storm surge reanalysis. All tests showed that the
model generated adequate probabilistic reanalyses, with realistic uncertainty bounds and high correla-
tion with the observed annual maxima. The return level values were more reliable than the single-site
estimates, for which the estimated uncertainties were roughly twice as large as that of the hierarchical
model. The results were less robust in some very localised cases, where the observations were starkly
different between two neighbouring tide gauges. This could happen, when individual annual maxima are
linked with very local storms and whose impact might be difficult to capture with the model. However,
the GEV parameters were modelled with a high confidence to at least few hundred kilometers away from
the nearest tide gauges, as they tend to vary rather smoothly across the domain.

A modified version of the same model was later used by Calafat et al. (2022), who estimated the
contributions of internal climate variability and external forcing on storm surges in the same region as
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Calafat et al. (2020). In their model, the scale parameter was kept constant and the contributions of
internal climate variability and external forcing (through mean sea level changes) were incorporated in
the integrated random-walk model for the location parameter. Their model was able to separate the
spatial fingerprint of external forcing from the internal variability, which were then used to estimate
the relative contributions of both factors to the spatial trends. They concluded that the internal climate
variability can have a large opposite effect to the storm surge trends in comparison to external forcing,
which underlines the need to account for the non-stationarity when calculating return level estimates.

Max-stable processes were also used by Rashid et al. (2024), who stochastically generated extreme
value realisations from a max-stable process, using 41 tide gauges with 68 years of data along the coastal
region of the United States. While the implementation details of the used max-stable process were not
specified in the article, according to the code accompanied by the paper they fitted the Gaussian ex-
treme value process model, the so-called Schlater’s model (Schlather, 2002) with different covariance
formulations and the Brown-Resnick model (Brown et al., 1977) with three regression formulations for
the location and the scale parameter to the observations. Using the best fitting model, they gener-
ated a 10000-member ensemble of annual storm surge maxima along the coastal region of the United
States, using annual maximum storm surges from the GTSM reanalysis. As their max-stable model gen-
erated samples that were temporally uncorrelated with the observations, spatiotemporal variability of
the synthetic samples was matched with the observed annual maxima by re-ranking them according to
the rank-ordering of the observed storm surge maxima. Ranks in ungauged locations were calculated as
distance-weighted averages from the ranks of the two nearest tide gauges. This procedure was based
on the assumption that the closest tide gauges provide sufficient information about the storm surge at
a particular location of the coast, although for locations farther away from tide gauges, this assumption
might not completely hold.

Validation of their approach showed that the synthetic annual maxima were slightly too large in many
locations, although the error statistics were dominated by a single tide gauge in the Florida coast. Also,
the uncertainty range in the estimated return levels was again substantially smaller compared to the
single site fits. A major benefit of their approach is that it is feasible to generate a very large sample of
sea level extremes, which allows to effectively quantify the uncertainty in the simulated values.

To conclude, fully spatial models provide the most comprehensive approach, along physics-based
modelling, to assess sea level extremes in a spatially consistent way and can also be used to generate
synthetic time series with appropriate data models. However, these methods can be computationally
expensive and their use is currently limited in the large scale applications. Furthermore, their use is less
straightforward in real-world studies compared to most of the simpler methods.

4.5 Satellite-based analyses

An alternative source of spatial information on sea level extremes is provided by global satellite altimetry.
Two articles using satellite data were found that cover the study region. Lobeto et al. (2018), studied non-
tidal residual storm surge on the US eastern coast using remote sensed sea level height from satellite
altimetry. They fitted a non-stationary GEV distribution to the satellite observations and then corrected
the spatial return level estimates z,?AT with an extreme scale factor according to the equation

AT = esFz5AT = (0.65Kgp + 0.35Kyy) oA (26)

In this equation, Kgp and Kyy, are parameters that describe the effects of exposure to the open ocean
and the width of the continental shelf on the estimated return levels, respectively. The scaling factors
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were optimised using return level ratios with respect to the closest tide gauge ¢, = z,?AT,/zIG that
were defined according to the strength of correlation between the satellite and in-situ measurements.
The scaling was designed to address errors, which are caused by missing satellite data and decreasing
accuracy near the shore. After the scaling, the mean relative error was decreased substantially (from
86% to around 10%) in eight out-of-sample tide gauge locations. Their results showed that the developed
methodology addressed some of the limitations of satellite altimetry data, which hamper their use in
extreme value analysis and also helped to carry out spatiotemporal assessment of extreme sea levels.

Recently, Bij De Vaate et al. (2024) assessed the usability of global satellite-derived non-tidal residual
storm surge for extreme value analysis, using 29 years of data from eight low-resolution mode satellite
radar altimeters. They also used a non-stationary GEV model to cover full spatio-temporal variations
in the sea level extremes. The satellite data was stacked on a 5° x 5° grid to increase the amount of
data points in each grid box. Furthermore, a slightly different type of scaling compared to Lobeto et al.
(2018) was applied to the GEV location and scale parameters in order to reduce the effect of under-
sampling when estimating these two parameters. The scaling was performed using the GTSM ocean
reanalysis instead of in-situ observations, as it was considered to better represent conditions over open
ocean. The GEV distribution was fitted locally to 25 random sub-samples of the reanalysis time series
after they had been trimmed to match the length of the local satellite time series. The scaling factors
were then estimated by minimising the root-mean-squared-error between the GEV distributions fitted
to the full and sub-sampled reanalysis time series with the median over the 25 samples used as the best
estimate for the scaling factors. The results showed that the scaling factor for the location parameter
was typically less than one, meaning that undersampling likely lead to overestimation of its values. In
contrast, the scaling factor for the scale parameter showed less systematic variations throughout the
global oceans. Bij De Vaate et al. (2024) concluded that while satellite altimetry data allows to estimate
spatial variations in the global sea level extremes to certain extent, the coarse temporal resolution and
the sensitivity to sea-ice make their use questionable at higher latitudes.

5 Conclusions

We have reviewed 37 articles, which considered some form of spatial extreme value analysis in the North
Atlantic and Baltic Sea region. The reviewed articles were classified into five categories: 1) physics-based
2) regional frequency analysis, 3) one-dimensional, 4) fully spatial and 5) satellite-based extreme value
analysis studies. The most common approach to spatial extreme value analysis was to run a physical
model and then apply EVA to the simulated sea level. Models, by definition, provide physically consistent
and spatially comprehensive data for analysis and are indispensable for climate change assessments of
sea-level extremes. However, physical models are computationally heavy to run, and do not necessarily
resolve local-scale features in storm surge behaviour. Furthermore, the results are to certain extent sen-
sitive to atmospheric forcing used to drive the models. Regional frequency analysis and one-dimensional
spatial models provide a simplified approaches to spatial modelling. The former pools observations over
a certain region to increase the sample size, while the latter one typically applies statistical analysis over
a coastal region, using the distance as an explanatory variable for the distribution parameters. These
methods are usually simpler to apply than fully spatial models, but have limitations on how they capture
the spatial dependency. Fully spatial models, on the other hand, particularly when applied to physi-
cal model data provide perhaps the most comprehensive approach to EVA, as they directly account for
spatial dependence in sea-level extremes. Many methods also allow to generate spatial realisations of
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extremes from their data models. Although being rather complex and in some cases computationally
heavy, these methods deserve a further inspection within MAWECLI.

One avenue worth further exploration is machine learning-based modelling of sea level extremes.
While machine learning has been applied to storm surge prediction, there seems not to be many ap-
plications that also include EVA, particularly within the region of interest. An example of such a study
was conducted by Rohmer et al. (2023), who used machine learning to increase the sample size when
analysing wave height extremes in the Caribbean Sea region. It is expected that machine learning based
modelling studies of extreme sea levels will gain popularity in the future.
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